Answer:
Work cause a change in kinetic energy
Explanation:
Given that,
Initial speed of the bag, u = 7.3 m/s
Height above ground, s = 24 m
We need to find the speed of the bag just before it reaches the ground. It can be calculated using third equation of motion as :


v = 22.88 m/s
So, the speed of the bag just before it reaches the ground is 22.38 m/s. Hence, this is the required solution.
Answer:

Acceleration, in m/s, of such a rock fragment = 
Explanation:
According to Newton's Third Equation of motion

Where:
is the final velocity
is the initial velocity
a is the acceleration
s is the distance
In our case:

So Equation will become:

Acceleration, in m/s, of such a rock fragment = 
-- Put the rod into the freezer for a while. As it cools,
it contracts (gets smaller) slightly.
-- Put the cylinder into hot hot water for a while. As it heats,
it expands (gets bigger) slightly.
-- Bring the rod and the cylinder togther quickly, before the
rod has a chance to warm up or the cylinder has a chance
to cool off.
-- I bet it'll fit now.
-- But be careful . . . get the rod exactly where you want it as fast
as you can. Once both pieces come back to the same temperature,
and the rod expands a little and the cylinder contracts a little, the fit
will be so tight that you'll probably never get them apart again, or even
move the rod.
Answer:
300 Pascal
Explanation:
Given
weight or force (F) = 6000 N
area (A) = 20 m²
pressure (p) = ?
we know
the force acting normally per unit area is pressure. So
P = F / A
= 6000 / 20
= 300 Pascal
Hope it will help :)