1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
10

An 84% efficient single pulley is used to lift a 230 kg piano 3.5 m. How much work must be input?

Physics
1 answer:
Sati [7]3 years ago
3 0

Answer:

35%

Explanation:

win

You might be interested in
Which statement is true about the thermal energy of an object? Choose the correct answer. 1). Thermal energy is the internal pot
Brums [2.3K]
This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects.
5 0
2 years ago
Find the resultant of an easterly force of 100 N and a southeast force of 80 N acting at 65 degrees to the 100 N force
saveliy_v [14]

Answer:

Resultant is 152 N at 28.5 degrees south to the 100 N force

Explanation:

7 0
3 years ago
A force of 45 newtons is applied on an object, moving it 12 meters away in the same direction as the force. What is the magnitud
klio [65]

If the applied force is in the same direction as the object's displacement, the work done on the object is:

W = Fd

W = work, F = force, d = displacement

Given values:

F = 45N

d = 12m

Plug in and solve for W:

W = 45(12)

W = 540J

5 0
3 years ago
A small box of mass m1 is sitting on a board of mass m2 and length L. The board rests on a frictionless horizontal surface. The
Nadusha1986 [10]

Answer:

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}

Explanation:

The Newton’s second law states that the net force on an object is the product of mass of the object and final acceleration of the object. The expression of newton’s second law is,

\sum {F = ma}

Here, is the sum of all the forces on the object, mm is mass of the object, and aa is the acceleration of the object.

The expression for static friction over a horizontal surface is,

F_{\rm{f}}} \leq {\mu _{\rm{s}}}mg

Here, {\mu _{\rm{s}}} is the coefficient of static friction, mm is mass of the object, and g is the acceleration due to gravity.

Use the expression of static friction and solve for maximum static friction for box of mass {m_1}

Substitute  for in the expression of maximum static friction {F_{\rm{f}}} = {\mu _{\rm{s}}}mg

{F_{\rm{f}}} = {\mu _{\rm{s}}}{m_1}g

Use the Newton’s second law for small box and solve for minimum acceleration aa to pull the box out.

Substitute  for , [/tex]{m_1}[/tex] for in the equation .

{F_{\rm{f}}} = {m_1}a

Substitute {\mu _{\rm{s}}}{m_1}g for {F_{\rm{f}}} in the equation {F_{\rm{f}}} = {m_1}a

{\mu _{\rm{s}}}{m_1}g = {m_1}a

Rearrange for a.

a = {\mu _{\rm{s}}}g

The minimum acceleration of the system of two masses at which box starts sliding can be calculated by equating the pseudo force on the mass with the maximum static friction force.

The pseudo force acts on in the direction opposite to the motion of the board and the static friction force on this mass acts in the direction opposite to the pseudo force. If these two forces are cancelled each other (balanced), then the box starts sliding.

Use the Newton’s second law for the system of box and the board.

Substitute for for in the equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right)a

Substitute for in the above equation .

{F_{\min }} = \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

The constant force with least magnitude that must be applied to the board in order to pull the board out from under the box is \left( {{m_1} + {m_2}} \right){\mu _{\rm{s}}}g

There is no friction between the board and the surface. So, the force required to accelerate the system with the minimum acceleration to slide the box over the board is equal to total mass of the board and box multiplied by the acceleration of the system.

5 0
3 years ago
A particle moving along the x-axis has a position given by m, where t is measured in s. What is the magnitude of the acceleratio
8090 [49]

Question:

A particle moving along the x-axis has a position given by x=(24t - 2.0t³)m, where t is measured in s. What is the magnitude of the acceleration of the particle at the instant when its velocity is zero

Answer:

24 m/s

Explanation:

Given:

x=(24t - 2.0t³)m

First find velocity function v(t):

v(t) = ẋ(t) = 24 - 2*3t²

v(t) = ẋ(t) = 24 - 6t²

Find the acceleration function a(t):

a(t) = Ẍ(t) = V(t) = -6*2t

a(t) = Ẍ(t) = V(t) = -12t

At acceleration = 0, take time as T in velocity function.

0 =v(T) = 24 - 6T²

Solve for T

T = \sqrt{\frac{-24}{6}} = \sqrt{-4} = -2

Substitute -2 for t in acceleration function:

a(t) = a(T) = a(-2) = -12(-2) = 24 m/s

Acceleration = 24m/s

4 0
3 years ago
Other questions:
  • Find the magnitude of the vector 34 i^+ 14 j^m.
    8·1 answer
  • How do you know the force for an acceleration of zero?
    8·1 answer
  • Two hover pucks collide in an off-centered collision and stick to one another via velcro. When they do so, they rotate in place.
    10·1 answer
  • Explain in 3 or 4 sentences how materials are sorted by nature.
    5·1 answer
  • An object blocks the path of a wave causing the wave to change direction is called what
    11·2 answers
  • Larry sees a group of people weeping, with frowns on their faces and their eyes turned down. Larry their expressions to understa
    13·1 answer
  • Which of the following statements about Australian football is TRUE?
    9·2 answers
  • Would you classify petroleum as a renewable or nonrenewable resource? Justify your answer in two or more complete sentences.
    12·1 answer
  • A 8.0-g bullet with an initial velocity of 115.0 m/s lodges in a block of wood and comes to rest at a
    14·1 answer
  • find the work done be the force field f in moving an object along the curve pictured in the graph. do this by computing the work
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!