Answer:
Albert Einstein is perhaps most famous for introducing the world to the equation E=mc2. In essence, he discovered that energy and mass are interchangeable, setting the stage for nuclear power—and atomic weapons. His part in the drama of nuclear war may have ended there if not for a simple refrigerator.
Explanation:
Albert Einstein is perhaps most famous for introducing the world to the equation E=mc2. In essence, he discovered that energy and mass are interchangeable, setting the stage for nuclear power—and atomic weapons. His part in the drama of nuclear war may have ended there if not for a simple refrigerator.
So they can tell what exact species it is.
Answer:
Explanation:
Given that:
the temperature
= 250 °C= ( 250+ 273.15 ) K = 523.15 K
Pressure = 1800 kPa
a)
The truncated viral equation is expressed as:
![\frac{PV}{RT} = 1 + \frac{B}{V} + \frac{C}{V^2}](https://tex.z-dn.net/?f=%5Cfrac%7BPV%7D%7BRT%7D%20%3D%201%20%2B%20%5Cfrac%7BB%7D%7BV%7D%20%2B%20%5Cfrac%7BC%7D%7BV%5E2%7D)
where; B = -
C = -5800 ![cm^6/mol^2](https://tex.z-dn.net/?f=cm%5E6%2Fmol%5E2)
R = 8.314 × 10³ cm³ kPa. K⁻¹.mol⁻¹
Plugging all our values; we have
![\frac{1800*V}{8.314*10^3*523.15} = 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}](https://tex.z-dn.net/?f=%5Cfrac%7B1800%2AV%7D%7B8.314%2A10%5E3%2A523.15%7D%20%3D%201%2B%20%5Cfrac%7B-152.5%7D%7BV%7D%20%2B%20%5Cfrac%7B-5800%7D%7BV%5E2%7D)
![4.138*10^{-4} \ V= 1+ \frac{-152.5}{V} + \frac{-5800}{V^2}](https://tex.z-dn.net/?f=4.138%2A10%5E%7B-4%7D%20%20%5C%20V%3D%201%2B%20%5Cfrac%7B-152.5%7D%7BV%7D%20%2B%20%5Cfrac%7B-5800%7D%7BV%5E2%7D)
Multiplying through with V² ; we have
![4.138*10^4 \ V ^3 = V^2 - 152.5 V - 5800 = 0](https://tex.z-dn.net/?f=4.138%2A10%5E4%20%20%5C%20V%20%5E3%20%3D%20V%5E2%20-%20152.5%20V%20-%205800%20%3D%200)
![4.138*10^4 \ V ^3 - V^2 + 152.5 V + 5800 = 0](https://tex.z-dn.net/?f=4.138%2A10%5E4%20%20%5C%20V%20%5E3%20-%20V%5E2%20%2B%20152.5%20V%20%2B%205800%20%3D%200)
V = 2250.06 cm³ mol⁻¹
Z = ![\frac{PV}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7BPV%7D%7BRT%7D)
Z = ![\frac{1800*2250.06}{8.314*10^3*523.15}](https://tex.z-dn.net/?f=%5Cfrac%7B1800%2A2250.06%7D%7B8.314%2A10%5E3%2A523.15%7D)
Z = 0.931
b) The truncated virial equation [Eq. (3.36)], with a value of B from the generalized Pitzer correlation [Eqs. (3.58)–(3.62)].
The generalized Pitzer correlation is :
![T_c = 647.1 \ K \\ \\ P_c = 22055 \ kPa \\ \\ \omega = 0.345](https://tex.z-dn.net/?f=T_c%20%3D%20647.1%20%5C%20K%20%5C%5C%20%5C%5C%20P_c%20%3D%2022055%20%5C%20%20kPa%20%20%5C%5C%20%5C%5C%20%5Comega%20%3D%200.345)
![T__{\gamma}} = \frac{T}{T_c}](https://tex.z-dn.net/?f=T__%7B%5Cgamma%7D%7D%20%3D%20%5Cfrac%7BT%7D%7BT_c%7D)
![T__{\gamma}} = \frac{523.15}{647.1}](https://tex.z-dn.net/?f=T__%7B%5Cgamma%7D%7D%20%3D%20%5Cfrac%7B523.15%7D%7B647.1%7D)
![T__{\gamma}} = 0.808](https://tex.z-dn.net/?f=T__%7B%5Cgamma%7D%7D%20%3D%200.808)
![P__{\gamma}} = \frac{P}{P_c}](https://tex.z-dn.net/?f=P__%7B%5Cgamma%7D%7D%20%3D%20%5Cfrac%7BP%7D%7BP_c%7D)
![P__{\gamma}} = \frac{1800}{22055}](https://tex.z-dn.net/?f=P__%7B%5Cgamma%7D%7D%20%3D%20%5Cfrac%7B1800%7D%7B22055%7D)
![P__{\gamma}} = 0.0816](https://tex.z-dn.net/?f=P__%7B%5Cgamma%7D%7D%20%3D%200.0816)
![B_o = 0.083 - \frac{0.422}{T__{\gamma}}^{1.6}}](https://tex.z-dn.net/?f=B_o%20%3D%200.083%20-%20%5Cfrac%7B0.422%7D%7BT__%7B%5Cgamma%7D%7D%5E%7B1.6%7D%7D)
![B_o = 0.083 - \frac{0.422}{0.808^{1.6}}](https://tex.z-dn.net/?f=B_o%20%3D%200.083%20-%20%5Cfrac%7B0.422%7D%7B0.808%5E%7B1.6%7D%7D)
![B_o = 0.51](https://tex.z-dn.net/?f=B_o%20%3D%200.51)
![B_1 = 0.139 - \frac{0.172}{T__{\gamma}}^{ \ 4.2}}](https://tex.z-dn.net/?f=B_1%20%3D%200.139%20-%20%5Cfrac%7B0.172%7D%7BT__%7B%5Cgamma%7D%7D%5E%7B%20%5C%204.2%7D%7D)
![B_1 = -0.282](https://tex.z-dn.net/?f=B_1%20%3D%20-0.282)
The compressibility is calculated as:
![Z = 1+ (B_o + \omega B_1 ) \frac{P__{\gamma}}{T__{\gamma}}](https://tex.z-dn.net/?f=Z%20%3D%201%2B%20%28B_o%20%2B%20%5Comega%20B_1%20%29%20%5Cfrac%7BP__%7B%5Cgamma%7D%7D%7BT__%7B%5Cgamma%7D%7D)
![Z = 1+ (-0.51 +(0.345* - 0.282) ) \frac{0.0816}{0.808}](https://tex.z-dn.net/?f=Z%20%3D%201%2B%20%28-0.51%20%2B%280.345%2A%20-%200.282%29%20%29%20%5Cfrac%7B0.0816%7D%7B0.808%7D)
Z = 0.9386
![V= \frac{ZRT}{P}](https://tex.z-dn.net/?f=V%3D%20%5Cfrac%7BZRT%7D%7BP%7D)
![V= \frac{0.9386*8.314*10^3*523.15}{1800}](https://tex.z-dn.net/?f=V%3D%20%5Cfrac%7B0.9386%2A8.314%2A10%5E3%2A523.15%7D%7B1800%7D)
V = 2268.01 cm³ mol⁻¹
c) From the steam tables (App. E).
At ![T_1 = 523.15 \ K \ and \ P = 1800 \ k Pa](https://tex.z-dn.net/?f=T_1%20%3D%20523.15%20%5C%20%20K%20%5C%20and%20%20%5C%20P%20%3D%201800%20%5C%20k%20Pa)
V = 0.1249 m³/ kg
M (molecular weight) = 18.015 gm/mol
V = 0.1249 × 10³ × 18.015
V = 2250.07 cm³/mol⁻¹
R = 729.77 J/kg.K
Z = ![\frac{PV}{RT}](https://tex.z-dn.net/?f=%5Cfrac%7BPV%7D%7BRT%7D)
Z = ![\frac{1800*10^3 *0.1249}{729.77*523.15}](https://tex.z-dn.net/?f=%5Cfrac%7B1800%2A10%5E3%20%2A0.1249%7D%7B729.77%2A523.15%7D)
Z = 0.588
Sorry I don’t know the answer but sorry about this person
The answer is B. Suspension. Suspension mixtures are composed of two or more materials mixed together wherein the solute particles are usually larger than those found in a solution or colloid. In cases of solid-fluid suspension mixtures, the solid solute particles tend to settle at the bottom of the mixture after some time.