Answer:
True
Explanation:
Yes.
The distance that the molecules move depends on their solubility in the solvent and the size of the molecules. Heavy molecules will travel slower and therefore travel a shorter distance in the time the chromatography is run.
We know from such things as felt tip pens that colourings can be soluble in different solvents. Water soluble felt pens have colours that are - well - water soluble. Permanent felt pens have colours that are insoluble in water but that are soluble in another solvent. This could well be alcohol.
The water soluble colours may also be soluble in alcohol. The solubility in alcohol will be different from the solubility in alcohol, and so the Rf value ( the distance travelled) will also be different.
Because of the complicated shapes of the colours, the colours may not have the same order in the Rf values in the different solvents.
Answer:
B) 2
Explanation:
Significant figures : The figures in a number which express the value -the magnitude of a quantity to a specific degree of accuracy is known as significant digits.
The rule apply for the multiplication and division is :
The least number of significant figures in any number of the problem determines the number of significant figures in the answer.
The rule apply for the addition and subtraction is :
The least precise number present after the decimal point determines the number of significant figures in the answer.
(3.478-2.31) = 1.168 ≅ 1.17 (Rounded to least decimal digit)
(4.428-3.56) = 0.868 ≅ 0.87 (Rounded to least decimal digit)
So,
1.17 * 0.87 = 1.0 (Rounded to least significant)
Answer - two significant digits
Answer:
9.474 x 10^2
Explanation:
ok. first you have to get the value in the required unit so 9474mm/(10mm/cm) = 947.4 so scientific notation states that the number must be raised to any power of an integer and the value of the number being raised must be less than than 10 and more than or equal to 1
so it must have one digit in front so.. 947.4 becomes 9.474 and because you move 2 places to the left, ur power is positive 2
and proof 10^2 is 100 so multiply 9.474 by 100 and u will get 947.4 cm which is also 9474 mm
I have the same question and cant still answer it so I need the answers
Answer:
The specific heat of zinc is 0.361 J/g°C
Explanation:
<u>Step 1:</u> Data given
44.0 J needed
Mass of solid zinc = 10.6 grams
Initial temperature = 24.9 °C
Final temperature = 36.4 °C
<u>Step 2</u>: Calculate the specific heat of zinc
Q = m*c*ΔT
⇒ with Q = heat (in Joule) = 44.0 J
⇒ with m = the mass of the solid zinc = 10.6 grams
⇒ with c = the specific heat of the zinc = TO BE DETERMINED
⇒ with ΔT = The change in temperature = T2-T1 = 36.4 °C - 24.9 °C = 11.5 °C
44.0 J = 10.6 grams * c * 11.5°C
c = 44.0 J / (10.6g * 11.5 °C)
c = 0.361 J/g°C
The specific heat of zinc is 0.361 J/g°C