Answer:
Value = 1.80 g/cm³ (Approx)
Explanation:
Given:

Computation:

Value = 1.80 g/cm³ (Approx)
Answer is: adding NaCl will lower the freezing point of a solution.
A solution (in this example solution of sodium chloride) freezes at a lower temperature than does the pure solvent (deionized water).
The higher the solute concentration (sodium chloride), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
Dissociation of sodium chloride in water: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Answer:
B) Electrons are located in the cloud-like areas around the nucleus.
Explanation:
The quantum mechanical model of the atom does not consider the path through which an electron travels. It rather estimates the probability of where electrons can be found at each energy level.
The region of maximum probability of where an electron is located is sometimes called an electron cloud or orbital. Each orbital of an atom and the electrons accomodated are described completely by a set of four quantum numbers.
D
Molecules consist of multiple atoms put together to create a new form.
HNO3 and H2SO4 are Arrhenius acids which will increase the concentration of H+ when dissolved in water.
KOH and Ca(OH)2 are Arrhenius bases that increase the concentration of OH- when dissociated in water.