Batteries come in all shapes and sizes, and depending on the type of battery, the minerals that compose them are mainly lithium, cobalt, graphite, nickel and manganese.
Answer:
Intermolecular bonds are found in all of them. They can come in different versions.
Balanced equation: Mg+2HCl=MgCl2 + H2
Showing that if Mg is not a limiting factor then 2 moles of HCl on complete reaction liberate 1 mole of Hydrogen
therefore:
1 mole of HCl=35.5g, 40g=x
X= 40/35.5= 1.127mole
2 moles of HCl = 1 moles of Hydrogen
1.127=X
X=1.127/2 = 0.56
the theoretical yield of hydrogen
Answer:
[HI] = 0.264M
Explanation:
Based on the equilibrium:
2HI(g) ⇄ H₂(g) + I₂(g)
It is possible to define Kc of the reaction as the ratio between concentration of products and reactants using coefficients of each compound, thus:
<em>Kc = 0.0156 = [H₂] [I₂] / [HI]²</em>
<em />
As initial concentration of HI is 0.660mol / 2.00L = <em>0.330M, </em>the equlibrium concentrations will be:
[HI] = 0.330M - 2X
[H₂] = X
[I₂] = X
<em>Where X is reaction coefficient.</em>
<em />
Replacing in Kc:
0.0156 = [X] [X] / [0.330M - 2X]²
0.0156 = X² / [0.1089 - 1.32X + 4X²
]
0.00169884 - 0.020592 X + 0.0624 X² = X²
0.00169884 - 0.020592 X - 0.9376 X² = 0
Solving for X:
X = - 0.055 → False solution, there is no negative concentrations
X = 0.0330 → Right solution.
Replacing in HI formula:
[HI] = 0.330M - 2×0.033M
<h3>[HI] = 0.264M</h3>