In the given above, we have two densities which are 0.89 g/mL and 0.72 g/mL. We are also given that the liquids are immiscible. After the settlement of the liquids, they will form two layers.
The heavier substance, the one which has a higher density will be at the bottom and the lighter substance, the one which has a lower density will be at the top layer.
<u>Answer:</u> The chemical equation is written below.
<u>Explanation:</u>
Every balanced chemical equation follows law of conservation of mass.
This law states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form. This also means that total number of individual atoms on reactant side must be equal to the total number of individual atoms on the product side.
The chemical equation for the reaction of elemental boron and oxygen gas follows:

By Stoichiometry of the reaction:
4 moles of elemental boron reacts with 3 moles of oxygen gas to produce 2 moles of diboron trioxide.
The chemical equation for the reaction of diboron trioxide and water follows:

By Stoichiometry of the reaction:
1 mole of diboron trixoide reacts with 3 moles of water to produce 2 moles of boric acid.
Hence, the chemical equations are written above.
I think 3 of them are its been 1 half years since ive done this i dont take chemistry anymore
Answer:
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)
Explanation:
The unbalanced equation is
Al(s) + Ni²⁺(aq) ⟶ Ni(s) + Al³⁺(aq)
(i) Half-reactions
Al(s) ⟶ Al³⁺(aq) + 3e⁻
Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)
(ii) Balance charges
2 × [Al(s) ⟶ Al³⁺(aq) + 3e⁻]
3 × [Ni²⁺(aq) + 2e⁻ ⟶ Ni(s)]
gives
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s)
(iii) Add equations
2Al(s) ⟶ 2Al³⁺(aq) + 6e⁻
<u>3Ni²⁺(aq) + 6e⁻ ⟶ 3Ni(s) </u>
2Al(s) +3Ni²⁺(aq) + <em>6e</em>⁻ ⟶ 2Al³⁺(aq) + 3Ni(s) + <em>6e⁻
</em>
Simplify (cancel electrons)
2Al(s) +3Ni²⁺(aq) ⟶ 2Al³⁺(aq) + 3Ni(s)