<u>Answer:</u> The boiling point of solution is 100.53
<u>Explanation:</u>
We are given:
8.00 wt % of CsCl
This means that 8.00 grams of CsCl is present in 100 grams of solution
Mass of solvent = (100 - 8) g = 92 grams
The equation used to calculate elevation in boiling point follows:

To calculate the elevation in boiling point, we use the equation:

Or,

where,
Boiling point of pure solution = 100°C
i = Vant hoff factor = 2 (For CsCl)
= molal boiling point elevation constant = 0.51°C/m
= Given mass of solute (CsCl) = 8.00 g
= Molar mass of solute (CsCl) = 168.4 g/mol
= Mass of solvent (water) = 92 g
Putting values in above equation, we get:

Hence, the boiling point of solution is 100.53
Answer:
a) pH = 4.213
b) % dis = 2 %
Explanation:
Ch3COONa → CH3COO- + Na+
CH3COOH ↔ CH3COO- + H3O+
∴ Ka = 1.8 E-5 = ([ CH3COO- ] * [ H3O+ ]) / [ CH3COOH ]
mass balance:
⇒ <em>C</em> CH3COOH + <em>C</em> CH3COONa = [ CH3COOH ] + [ CH3COO- ]
<em>∴ C </em>CH3COOH = 3.40 mM = 3.4 mmol/mL * ( mol/1000mmol)*(1000mL/L)
∴ <em>C</em> CH3COONa = 1.00 M = 1.00 mol/L = 1.00 mmol/mL
⇒ [ CH3COOH ] = 4.4 - [ CH3COO- ]
charge balance:
⇒ [ H3O+ ] + [ Na+ ] = [ CH3COO- ] + [ OH- ]....is negligible [ OH-], comes from water
⇒ [ CH3COO- ] = [ H3O+ ] + 1.00
⇒ Ka = (( [ H3O+ ] + 1 )* [ H3O+ ]) / ( 3.4 - [ H3O+])) = 1.8 E-5
⇒ [ H3O+ ]² + [ H3O+ ] = 6.12 E-5 - 1.8 E-5 [ H3O+ ]
⇒ [ H3O+ ]² + [ H3O+ ] - 6.12 E-5 = 0
⇒ [ H3O+ ] = 6.12 E-5 M
⇒ pH = - Log [ H3O+ ] = 4.213
b) (% dis)* mol acid = <em>C</em> CH3COOH = 3.4
∴ mol CH3COOH = 500*3.4 = 1700 mmol = 1.7 mol
⇒ % dis = 3.4 / 1.7 = 2 %
Answer:
Six electrons.
Explanation:
A carbon atom has six protons, so it must have six electrons.
Answer:
Explanation:
There are 3 types of plastids :-
1) Chloroplasts:- The green plastids which contain chlorophyll pigments for photosynthesis.
2) Chromoplasts:-The coloured plastids for pigment synthesis and storage.
3) Leucoplasts:- The colourless plastids for monoterpene synthesis found in non- photosynthetic parts of the plants.
They are of three types:-
a) Amyloplasts- stores starch.
b) Proteinoplasts- stores proteins.
c) Elaioplasts- stores fats and oils.
Answer is d. in hetrogeneous you can separate things from each other