Answer:
c. decarboxylation of an a-keto acid.
Explanation:
Decarboxylation refers to the removal of the carboxyl group from a carboxylic acid and thus releasing carbon dioxide. Decarboxylases are enzymes that speed up the removal of the carboxyl group from acids. These reactants could be amino acids, alpha-keto acids, and beta-keto acids. Biotin is known to catalyze the decarboxylation of malonyl CoA to acetyl CoA during fatty acid synthesis.
Malonyl CoA is converted to acetyl CoA after decarboxylation assisted by biotin also known as Vitamin H. Alpha keto acids are involved in fatty acids synthesis and Malonyl CoA is an alpha-keto acid because the keto group is located in the first carbon near the carboxylic acid group. Keto acids have both a carboxyl group and a ketone group.
A.atomic mass(a)=16
atomic mass(b)=18
b.a and b are isotopes
c.(a)=2,6
(b)=2,6
Answer:
The answer should be C. Primarily in the liver in response to inflammation :)
Have an amazing day!!
Please rate and mark brainliest!!
Answer: 22 kJ amount of energy is released in the following reaction.
Explanation: There are two types of reaction on the basis of amount of heat absorbed or released.
1. Endothermic reactions: These are the type of reactions in which reactants absorb heat to form the products. The energy of the reactants is less than the energy of the products.
2. Exothermic reactions: These are the type of reactions in which heat is released from the chemical reactions. The energy of the products is less than the reactants.
Sign convention for
: This value is negative for exothermic reactions and positive for endothermic reactions.
For the given chemical reaction,
Energy of the products is less than the energy of the reactants, Hence, this reaction will be a type of exothermic reaction and energy will be released during this chemical change.
Amount of energy released = (350 - 372) kJ = -22kJ
Negative sign symbolizes the energy is being released. So, 22 kJ amount of energy is released in the following reaction.
Answer:
The answer to your question is V2 = 23.52 l
Explanation:
Data
Volume 1 = V1 = 22.5 l
Pressure 1 = P1 = 734 mmHg
Volume 2 = V2 = ?
Pressure 2 = 702 mmHg
Process
To solve this problem use Boyle's law.
P1V1 = P2V2
-Solve for V2
V2 = P1V1 / P2
-Substitution
V2 = (734 x 22.5) / 702
-Simplification
V2 = 16515 / 702
-Result
V2 = 23.52 l
-Conclusion
If we diminish the pressure, the volume will be higher.