Answer:
The balanced molecular equation for the reaction :

Explanation:
The reaction between copper(II) nitrate and potassium carbonate gives solid precipitate of copper(II) carbonate and aqueous solution of potassium nitrate.

According to reaction, 1 mole of copper(II) nitrate reacts with 1 mole of potassium carbonate to give 1 mole of copper(II) carbonate and 2 moles of potassium nitrate,
This would be 1.22 x 10^1
You simply move the decimal.
If this helped you, please list me as brainliest!
Answer: Between 1 and 2.
Explanation:
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
............(1)
where,
a = amount of reactant left after n-half lives = 40
= Initial amount of the reactant = 100
n = number of half lives
Putting in the values we get:

taking log on both sides


Thus half-lives that have elapsed is between 1 and 2
We have seasons on earth because of the way the earth is tilt on its axis. at a certain time in the year, the sun's rays reach certain parts of the globe more than others.
some places have 4 seasons because they are in the northern hemisphere, which is in the sweet spot of the sun's rays that give us each season. other places only have 1 or 2 because they are not in the northern hemisphere.
<em>Answer :</em> 72.05 g/mol
<span>
<em>Explanation : </em>
Let's </span>assume that the given gas is an ideal gas. Then we can use ideal gas equation,<span>
PV = nRT<span>
</span>
Where,
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the gas </span></span>is,<span>
P = 777 torr = 103591 Pa
V = </span>125 mL = 125 x 10⁻⁶ m³<span>
T = (</span>126 + 273<span>) = 399 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
103591 Pa x </span>125 x 10⁻⁶ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 399 K<span>
n = 3.90 x 10</span>⁻³<span> mol
</span>Moles (mol) = mass (g) /
molar mass (g/mol)<span>
Mass of the gas = </span><span>0.281 g
</span>Moles of the gas = 3.90 x 10⁻³ mol
<span>Hence,
molar mass of the gas = mass / moles
= 0.281 g / </span>3.90 x 10⁻³ mol
<span> = 72.05 g/mol
</span>