The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
The answer is the letter C
I believe it’s C.) Mass. Hope I’m right.
Answer:
3.67 mol Cl
Explanation:
We need to convert g of Cl 2 to moles of Cl. First we divide 130 gCl2 by the molar mass (70.90 gCl2/mol) to find out how many moles of Cl2 do we have.
130 gCl2 x
= 1.83 mol Cl2
Then we need to convert 1.83 mol de Cl2 to moles of Cl. We have 2 moles of Cl in every Cl2 molecule so we just need to multiply by 2.
1.83 molCl2 x
= 3.67 molCl
Answer:
A.) 1.845
Explanation:
You can find the pOH using the following equation:
pOH = -log[OH⁻]
Since NaOH dissociates into 1 Na⁺ and 1 OH⁻, the concentration of both ions is 0.0143 M.
pOH = -log[OH⁻]
pOH = -log[0.0143]
pOH = 1.845