Answer:
a) ΔHvap=35.3395 kJ/mol
b) Tb=98.62 °C
Explanation:
Given the reaction:
C₇H₁₆ (l) ⇔ C₇H₁₆ (g)
Kp=P(C₇H₁₆) since the concentration ratio for a pure liquid is equal to 1.
When
T₁=50°C=323.15K ⇒P₁=0.179
T₂=86°C=359.15K ⇒P₂=0.669
The Clasius-Clapeyron equation is:



ΔHvap=35339.5 J/mol=35.3395 KJ/mol
Normal boiling point ⇒ P=1 atm
Hence, we find the normal boiling point where:
T₁=323.15K
P₁=0.179 atm
P₂=1 atm



T₂=371.77 K= 98.62 °C
From the statement of Hess' law, the enthalpy of the reaction A---> C is +90 kJ
<h3>What is Hess' law?</h3>
Hess' law of constant heat summation states that for a multistep reaction, the standard enthalpy of reaction is always constant and is independent of the pathway or intermediate routes taken.
From Hess' law, the enthalpy change for the reaction A ----> C is calculated as follows:
A---> C = A ---> B + B ---> C
ΔH of A---> C = 30 kJ + 60 kJ
ΔH = 90 kJ
Therefore, the enthalpy of the reaction A---> C is +90 kJ
The above reaction A---> C can be shown in the enthalpy diagram below:
A -------------------> C (ΔH = +90 kJ)
\ /
\ / (ΔH = +60 kJ)
(ΔH = +30 J) \ /
> B
Learn more about enthalpy and Hess law at: brainly.com/question/9328637
Answer:
The 2292 moles of CO are needed to react completely with 122 Kg of Fe₂O₃.
Explanation:
Given data:
Mass of Fe₂O₃ = 122 Kg ( 122×1000 = 122000 g)
Moles of CO = ?
Solution:
Chemical equation:
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Number of moles of Fe₂O₃:
Number of moles = mass/ molar mass
Number of moles = 122000 g /159.69 g/mol
Number of moles = 764 mol
Now we will compare the moles of Fe₂O₃ with CO.
Fe₂O₃ : CO
1 : 3
764 : 3×764 =2292 mol
The 2292 moles of CO are needed to react completely with 122 Kg of Fe₂O₃.
Cytokinesis ensures that one nucleus ends up in daughter cells during cell division
Answer:
B.) Trigonal planar
Explanation:
This molecule has 3 bonds and no lone pairs. The angles are all 120° and the bonds are within the same plane. These molecules have the molecular shape of trigonal planar.