5. b is the right answer
6. c is the right answer
Answer:
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
2 NO (g) + O₂ (g) ⇄ 2NO₂ (g)
Let's apply the thermodynamic formula to calculate the ΔG
ΔG = ΔG° + R .T . lnQ
We don't know if the gases are at equilibrium, that's why we apply Q (reaction quotient)
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln Q
How can we know Q? By the partial pressures (Qp)
P NO = 0.450atm
PO₂ = 0.1 atm
PNO₂ = 0.650 atm
Qp = [NO₂]² / [NO]² . [O₂]
Qp = 0.650² / 0.450² . 0.1 = 20.86
ΔG = - 69 kJ/mol + 8.31x10⁻³ kJ/K.mol . 298K . ln 20.86
ΔG = -61.5 kJ/mol (<u>Spontaneous process</u>)
Explanation:
The given data is as follows.
Weight of solute = 75.8 g, Molecular weight of solute (toulene) = 92.13 g/mol, volume = 200 ml
- Therefore, molarity of toulene is calculated as follows.
Molarity = 
= 
= 4.11 M
Hence, molarity of toulene is 4.11 M.
- As molality is the number of moles of solute present in kg of solvent.
So, we will calculate the molality of toulene as follows.
Molality = 
= 
= 8.6 m
Hence, molality of given toulene solution is 8.6 m.
- Now, calculate the number of moles of toulene as follows.
No. of moles = 
= 
= 0.8227 mol
Now, no. of moles of benzene will be as follows.
No. of moles = 
= 
= 1.2239 mol
Hence, the mole fraction of toulene is as follows.
Mole fraction = 
= 
= 0.402
Hence, mole fraction of toulene is 0.402.
- As density of given solution is 0.857
so, we will calculate the mass of solution as follows.
Density = 
0.857
=
(As 1
= 1 g)
mass = 171.4 g
Therefore, calculate the mass percent of toulene as follows.
Mass % = 
= 
= 44.22%
Therefore, mass percent of toulene is 44.22%.
Complete Question:
check the first image for complete part of the question
Answer and Explanation:
Epoxide is a three membered ring made up of two carbon atoms and one oxygen atom. Epoxides are cyclic ethers. Due to its ring size, it is highly strained and very reactive. Epoxide ring opening takes place with respect to addition of acid and base.
Ring opening of epoxide with acid:
In the presence of base, the nucleophile attacks the epoxide ring at more substituted site and inverse stereochemistry takes place.(check file 2 attached)
Ring opening of epoxide with base:
The backside attack of nucleophile takes place in less substituted site and then it undergoes protonation to form a product.
(check file 2 attached)