<h2>
Hello!</h2>
The answer is:
The new volume is 2.84 L.

<h2>
Why?</h2>
To solve the problem, we need to remember what STP means. STP means that the gas is at standard temperature and pressure, or 273.15 K (0°C) and 1 atm.
Also, we need to use the Combined Gas Law, since the temperature, the pressure and the volume are being changed.
The Combined Gas Law establishes a relationship between the temperature, the pressure and the volume of an ideal gas using , Gay-Lussac's Law, Charles's Law, and Boyle's Law.
The law is defined by the following equation:

Where,
is the first pressure.
is the first volume.
is the first temperature.
is the second pressure.
is the second volume.
is the second temperature.
So, we are given the following information:

Then, isolating the new volume, and substituting, we have:

Hence, the new volume is 2.84 L.

Have a nice day!
Answer:
D. Exothermic.
Explanation:
Hello there!
In this case, since the potential energy versus reaction progress diagrams are related to the energetic profile of a chemical reaction, we can set the initial point at the beginning of the reaction as the energy of the reactants and the final point as the energy of the products.
Next, since the change in the enthalpy of a reaction is quantified by subtracting products minus reactants, we can see that the products have less energy than the reactants and therefore ΔH for this reaction is negative, which matches with the definition of D. Exothermic reaction.
Regards!
Ok I’m figuring this one out
Answer:
directly proportional to one another
Explanation:
Volatility refers to how quickly a substance changes from liquid to gas.
If a substance has a high vapour pressure, the substance is highly volatile. Similarly, if a substance has a low vapour pressure, then the substance is much less volatile.
This implies that volatility and vapour pressure gives a direct proportionality.
The answer to this is: <span>resolution</span>