<span>15 m/s^2
The first thing to calculate is the difference between the final and initial velocities. So
180 m/s - 120 m/s = 60 m/s
So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving
60 m/s / 4.0 s = 15.0 m/s^2
Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2</span>
The correct answer to the question is : D) 352.6 m/s.
CALCULATION :
As per the question, the temperature is increased from 30 degree celsius to 36 degree celsius.
We are asked to calculate the velocity of sound at 36 degree celsius.
Velocity of sound is dependent on temperature. More is the temperature, more is velocity of sound.
The velocity at this temperature is calculated as -
V = 331 + 0.6T m/s
= 331 + 0.6 × 36 m/s
= 331 + 21.6 m/s
= 352.6 m/s.
Here, T denotes the temperature of the surrounding.
Hence, velocity of the sound will be 352.6 m/s.
Answer:
To convert a millisecond measurement to a second measurement, divide the time by the conversion ratio. The time in seconds is equal to the milliseconds divided by 1,000.
Explanation:
hope it helps
A is a good example, i suppose.
The problem should only have one part to it, but this one has two.
Before I can do the mass/energy conversion, I have to go and
look up the proton mass for myself ... go out and collect the straw
to make my bricks, as it were. As if the fabulous bounty of 7 points
makes it worth it. They make us do everything around here.
OK. In my Physics book⁽¹⁾, the proton rest mass is
1.67 x 10⁻²⁷ kg.
The formula that relates mass to the equivalent energy is
E = m c² .
The method of applying the formula is known as "plug in what you know",
as follows:
E = (mass) x (speed of light)²
= (1.67 x 10⁻²⁷ kg) x (3 x 10⁸ m/s)²
= (1.67 X 10⁻²⁷ Kg) x (9 x 10¹⁶ m²/s²)
= (1.5 x 10⁻¹⁰) (kg-m²/s²)
= 1.5 x 10⁻¹⁰ joule .
____________________________________
⁽¹⁾ Halliday, David and Resnick, Robert, Physics , John Wiley & Sons,
Inc., 1960, inside front cover, "SELECTED PHYSICAL CONSTANTS".