Answer:
Explanation:
y_1 = (3 mm) sin(x - 3t)
comparing it with standard wave equation
y = A sin( ωt-kx )
we see
ω = -3 , k = -1
velocity = ω / k
= 3
y_2 = (6 mm) sin(2x - t)
we see
ω = -1 , k = -2
velocity = ω / k
= .5
y_3 = (1 mm) sin(4x - t)
we see
ω = -1 , k = -4
velocity = ω / k
= .25
y_4 = (2 mm) sin(x - 2t)
we see
ω = -2 , k = -1
velocity = ω / k
= 2
So greatest velocity to lowest velocity
y_1 = (3 mm) sin(x - 3t) , y_4 = (2 mm) sin(x - 2t) ,y_2 = (6 mm) sin(2x - t) , y_3 = (1 mm) sin(4x - t)
b )
Given the mass per unit length of wire the same , velocity is proportional to
√ T , where T is tension
so in respect of tension in the wire same order will exist for highest to lowest tension .
Answer:
217.43298 m/s
Explanation:
= Mass of bullet = 19 g
= Mass of bob = 1.3 kg
L = Length of pendulum = 2.3 m
= Angle of deflection = 60°
u = Velocity of bullet
Combined velocity of bullet and bob is given by

As the momentum is conserved

The speed of the bullet is 217.43298 m/s
This is not that exact but I hope that this will help you.
The effect of gravity is more in liquid than in solid because as we know that liquid pressure increase in the increase in depth but solid dont
Answer:
<em>1.11m</em>
Explanation:
From the diagram we are given the following forces;
F1 = 24.3N
F3 = 30N
Since the sum of upward forces is equal to that of downward force, then;
F2 = F1 + F3
F2 = 24.3N + 30N
F2 = 54.3N
Required
Distance between B and C
First we need to get Length of AC
Take moment about A
Anticlockwise moment = F3 cos20 * AC
Anticlockwise moment = 30ACcos 20
Clockwise moment = 1.2 * F2
Clockwise moment = 1.2(54.3) = 65.16Nm
Applying the principle of moment;
Sum of ACW moment = Sum of CW moments
30ACcos 20 = 65.16
AC = 65.16/30cos20
AC = 65.16/28.19
AC = 2.31m
Get the distance BC
AC = AB + BC
BC = AC-AB
BC = 2.31 - 1.2
BC = 1.11m
Hence the separation between B and C is 1.11m
<em>Note that the force F1 got in (a) was the value used in the calculation.</em>
<em></em>
Explanation:
The given data is as follows.
C =
R =
ohm
C
Q =
Formula to calculate the time is as follows.
0.135 =
= 7.407
t = 4.00 s
Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.