Complete Question
A wave is described by y(x,t) = 0.1 sin(3x + 10t), where x is in meters, y is in centimetres and t is in seconds. The angular wave frequency is
Answer:
The value is 
Explanation:
From the question we are told that
The equation describing the wave is y(x,t) = 0.1 sin(3x + 10t)
Generally the sinusoidal equation representing the motion of a wave is mathematically represented as

Where w is the angular frequency
Now comparing this equation with that given we see that

Objects should be cooled before their mass is determined on a sensitive balance because it could damage the balance. Also, because it would give you wrong reading of the mass. Hot objects would warm the air around it. A warm air would expand and would produce convection as it rises causing to give the object a mass that is less than the actual. Another reason would be it would cause instability in the readings, the mass would fluctuate every now and then due to the convection currents around the object. It is always recommended to weigh the masses of objects that are in room temperature.
To solve this problem, we must remember about the law of
conservation of momentum. The initial momentum mist be equal to the final
momentum, that is:
m1 v1 + m2 v2 = (m1 + m2) v’
where v’ is the speed of impact
Since we are not given the masses of each car m1 and m2,
so let us assume that they are equal, such that:
m1 = m2 = m
Which makes the equation:
m v1 + m v2 = (2 m) v’
Cancelling m and substituting the v values:
50 + 48 = 2 v’
2 v’ = 98
v ‘ = 49 km/h
<span>The speed of impact is 49 km/h.</span>
Because the act of braking is an example of negative acceleration.
Example: if the rate of braking was say 2 meters per second^2, and the starting velocity was 10 m/s, it would take 5 seconds to come to a stop(during those 5 seconds you would still be moving).
Answer:
Except in the crust, the interior of the Earth cannot be studied by drilling holes to take samples. Instead, scientists map the interior by watching how seismic waves from earthquakes are bent, reflected, sped up, or delayed by the various layers.
Explanation: