The surrounding environment cool off is the answer
If you drop a 50 gram piece of metal that has a temperature of 110°Celsius into 1000 grams of water at 25°Celsius, <span>D.)The water and the metal’s temperature will reach the same temperature. In any system undergoing heat transfer, the objects involved will eventually reach the same temperature, signifying thermal equilibrium.</span>
Answer:
Magnitude of electric field is 1.06 x
V/m along negative X-direction
Explanation:
Given: initial velocity of proton = u = 3.5 x
m/s
final velocity of proton = v = 0 m/s
initial point
= 0.2 m and final point is
= 0.8 m
According to conservation of energy:
change in in kinetic energy = change in potential energy of proton
⇒
where q and m is the charge and mass of proton E is the electric field ,
and
is the initial and final position of proton
on substituting the respected values we get,
1.023 x
= 9.6 x
x E
⇒ E = 1.06 x
V/m
external force is opposite to the motion as velocity of proton decreases with distance.
Therefore, magnitude of electric field is 1.06 x
V/m along negative X-direction
To solve the problem, start by applying the concepts related to current in an RL circuit. The current is defined exponentially and using Ohm's law we can put the initial current in terms of the voltage and resistance. Consecutively with the calculated time constant we can find the respective inductance. For the second part we will apply the electrical potential energy connectors to find the amount of stored energy.
PART A)





Inductance can be defined then,



PART B) Now the energy is given under the terms:



Therefore the energy stored in the coil at this same moment is 0.0002727J
Answer: For what objects? And what data?
Explanation: