The answer to this question would be: enzyme
<span>Enzyme is a kind of catalyst that </span>will take part in the chemical reaction but it won't be reacted. E<span>nzyme </span>only helps by reducing the energy needed to start the reaction.
Theoretically, the enzyme is not mandatory needed but if you have an enzyme the reaction will be easier, thus increasing reaction speed. But in most case, the reaction might be too slow without enzyme, making enzyme vital in living organism.
Answer: gas molecules will hit the container walls more frequently and with greater force
Explanation:
According to the postulates of kinetic molecular theory:
1. The pressure exerted by a gas in a container results from collisions between the gas molecules and the container walls.
2. The average kinetic energy of the gas molecules is proportional to the kelvin temperature of the gas.
When the temperature is increased, so the average kinetic energy and the rms speed also increase. This means that the gas molecules will hit the container walls more frequently and with greater force because they are all moving faster. This increase the pressure.
B. reproduction doesn’t require mate
Answer:
Receptor
Explanation:
Neurotransmitters are defined as chemical messengers that carry, stimulate and balance signals between neurons, or nerve cells and other cells in the body.
After release, the neurotransmitter crosses the synaptic gap and binds to the receptor site on the other neuron, stimulating or inhibiting the receptor neuron depending on what the neurotransmitter is. Neurotransmitters act as a key and the receptor site acts as a block. It takes the right key to open specific locks. If the neurotransmitter is able to function at the receptor site, it will cause changes in the recipient cell.
The "first-class" neurotransmitter receptors are ligand-activated ion channels, also known as ionotropic receptors. They undergo a change in shape when the neurotransmitter turns on, causing the channel to open. This can be an excitatory or inhibitory effect, depending on the ions that can pass through the channels and their concentrations inside and outside the cell. Ligand-activated ion channels are large protein complexes. They have certain regions that are binding sites for neurotransmitters, as well as membrane segments to make up the channel.