Answer:
Pressure = ρgh
pressure (p) is measured in pascals (Pa)
density (ρ) is measured in kilograms per metre cubed (kg/m3)
The fore of gravitational field strength (g) is measured in N/kg or m/s 2
height of column (h) is measured in metres (m)
Answer = 235,200 Pa
Explanation:
Pressure = ρgh
Pressure = 1,000 x 9.8 x 24
Pressure = 235,200 Pa
PART a)
As we know that gravitational potential energy is given by the formula
here we can see that gravitational potential energy inversely varies with the distance
so here when distance from the sun is minimum then magnitude of gravitational potential energy is maximum while since it is given with negative sign so its overall value is minimum at that position
So gravitational potential energy is minimum at the nearest point and maximum at the farthest point
PART b)
Since we know that sum of kinetic energy and potential energy is constant here
so the points of minimum potential energy is the point where kinetic energy is maximum which means speed is maximum
So here speed is maximum at the nearest point
Part C)
since gravitational potential energy inversely varies with distance so it's graph will be like hyperbolic graph with distance
Answer:
Explanation: y’all taking the same test as me hahahahah I got the answers but I can’t attach the picture here so hit me up on snap daniela_0789
Answer:
Mass, m = 26.54kg
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
- Fapp is the applied force
- Fg is the force due to gravitation
<u>Given the following data;</u>
Net force, Fnet = 345
Acceleration, a = 3.2m/s²
<u>To find mass;</u>
Fnet = Fapp + Fg
Fnet = ma + mg
Fnet = m(a+g)
m = Fnet/(a+g)
We know that acceleration due to gravity, g = 9.8m/s²
Substituting into the equation, we have;
m = 345/(3.2 + 9.8)
m = 345/13
Mass, m = 26.54kg