Answer: 4.9 x 10^6 joules
Explanation:
Given that:
mass of boulder (m) = 2,500 kg
Height of ledge above canyon floor (h) = 200 m
Gravita-tional potential energy of the boulder (GPE) = ?
Since potential energy is the energy possessed by a body at rest, and it depends on the mass of the object (m), gravitational acceleration (g), and height (h).
GPE = mgh
GPE = 2500kg x 9.8m/s2 x 200m
GPE = 4900000J
Place result in standard form
GPE = 4.9 x 10^6J
Thus, the gravita-tional potential energy of the boulder-Earth system relative to the canyon floor is 4.9 x 10^6 joules
Distance = (speed) x (time)
Distance = (20 m/s) x (500 s)
Distance = (20 x 500) (m·s / s)
Distance = 10,000 m
Yes there is an elastic collision in physics its when a collision occurs but no kinetic energy is loss. We study them in order to understand how to conserve momentum.
Answer:
The inner planets are closer to the Sun and are smaller and rockier. The outer planets are further away, larger and made up mostly of gas. The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus , Earth and Mars.
Explanation:
This applies to nuclear reactions, specifically nuclear fission.
This huge release of energy has been used in atomic bombs and in the nuclear reactors that generate electricity.