The relationship between pressure and solubility of the gas is given by Henry's law as:

where,
is the solubility of the gas.
is proportionality constant i.e. Henry's constant.
is pressure of the gas.
(given)
(given)
Substituting the values,

To convert
to
:
Molar mass of benzene,
= 

Now for converting into
:
Since, 
So,
.
Hence, the solubility of benzene in water at
in
is
.
Answer:
M.Mass = 3.66 g/mol
Data Given:
M.Mass = M = ??
Density = d = 0.1633 g/L
Temperature = T = 273.15 K (Standard)
Pressure = P = 1 atm (standard)
Solution:
Let us suppose that the gas is an ideal gas. Therefore, we will apply Ideal Gas equation i.e.
P V = n R T ---- (1)
Also, we know that;
Moles = n = mass / M.Mass
Or, n = m / M
Substituting n in Eq. 1.
P V = m/M R T --- (2)
Rearranging Eq.2 i.e.
P M = m/V R T --- (3)
As,
Mass / Volume = m/V = Density = d
So, Eq. 3 can be written as,
P M = d R T
Solving for M.Mass i.e.
M = d R T / P
Putting values,
M = 0.1633 g/L × 0.08205 L.atm.K⁻¹.mol⁻¹ × 273.15 K / 1 atm
M = 3.66 g/mol
A total lunar eclipse takes place when the Earth comes between the Sun and the Moon and covers the Moon with its shadow. When this happens, the Moon can turn red, earning it the nickname of Blood Moon.
RCOOH + NaOH → RCOONa + H₂O (salt and water)
RCOOH + OH⁻ → RCOO⁻ + H₂O
Answer:
2H2(g]+O2(g]→2H2O(l]]. Notice that the reaction requires 2 moles of hydrogen gas and 1
Explanation: