18. a) The materials that are in contact. The two materials and the nature of their surfaces. ...
b) The force pushing the two surfaces together. Pushing the surfaces together causes the more of the asperities to come together and increases the surface area in contact with each other.
19. the quantity of motion of a moving body, measured as a product of its mass and velocity.
20. According to Newton's third law of motion, action force is equal to reaction but acts on two different bodies and in opposite directions. When a horse pushes the ground, the ground reacts and exerts a force on the horse in the forward direction. This force is able to overcome friction force of the cart and it moves.
21. The mass of an object is a measure of the object's inertial property, or the amount of matter it contains. The weight of an object is a measure of the force exerted on the object by gravity, or the force needed to support it. The pull of gravity on the earth gives an object a downward acceleration of about 9.8 m/s2.
22. R12. Mass is more fundamental because it is an intrinsic property of an object. Weight varies with location depending upon the acceleration due to gravity eg. for a mass m = 10kg on Earth it`s weight is W = mg = 10 x 10 = 100N.
A. a mixture is a combination of two or more substances in which each substance retains its own properties.
Answer:
1.8 moles of O₂
Explanation:
The balance chemical equation for said double replacement (photosynthesis) reaction is as follow;
6 CO₂ + 6 H₂O → C₆H₁₂O₆ + 6 O₂
According to balance chemical equation,
6 moles of O₂ are produced by = 6 moles of CO₂
So,
1.8 moles of O₂ will be produced by = X moles of O₂
Solving for X,
X = 1.8 mol × 6 mol / 6 mol
X = 1.8 moles of O₂
Stoichiometric problems in which moles are given and moles or other reactant or product asked are the simplest problems. One should only write the balanced chemical equation and perform above method to find the required moles.
Answer:
The water in the hydrate (referred to as "water of hydration") can be removed by heating the hydrate. When all hydrating water is removed, the material is said to be anhydrous and is referred to as an anhydrate.
Explanation: