Answer:
Electrons
Explanation:
According to the Valence Shell Electron Pair Repulsion Theory (VSEPR), the geometry of a molecule depends on the number of electron pairs (regions of electron density) on the central atom of the molecule. Electron pairs on the valence shell of the molecule tend to position themselves as far apart in space as possible to minimize repulsion between them. Hence, the orientation of these electron pairs is the ultimate determinant of the observed geometry of a molecule.
Lone pairs of electrons cause more repulsion than bond pairs of electrons on the central atom of a molecule. Hence when the central atom of a molecule contains lone pairs of electrons, the molecular geometry is usually distorted from the expected geometry on the basis of VSEPR theory.
Hence, electrons are the subatomic particles which are responsible for any change in the observed molecular geometry of a molecule.
Answer:
3626.76dm³
Explanation:
Given parameters:
Number of moles of Nitrogen in tank = 17moles
Temperature of the gas = 34°C
Pressure on the gas = 12000Pa
Unkown:
Volume of the tank, V =?
Converting the parameters to workable units:
We take the temperature from °C to Kelvin
K = 273 + °C = 273 + 34 = 307k
Taking the pressure in Pa to atm:
101325Pa = 1atm
12000Pa = 0.118atm
Solution:
To solve this problem, we employ the use of the ideal gas equation. The ideal gas law combines three gas laws which are the Boyle's law, Charles's law and the Avogadro's law.
It is expressed as PV = nRT
The unknown is the Volume and we make it the subject of the formula
V = 
Where R is called the gas constant and it is given as 0.082atmdm³mol⁻¹K⁻¹
Therefore V =
= 3626.76dm³
As,
5471 kJ heat is given by = 1 mole of Octane
Then,
5310 kJ heat will be given by = X moles of Octane
Solving for X,
X = (5310 kJ × 1 mol) ÷ 5471 kJ
X = 0.970 moles of Ocatne
So, 0.970 moles of Octane will liberate 5310 kJ energy. Now changing moles to mass,
As,
Moles = mass / M.mass
Or,
Mass = Moles × M.mass
Putting values,
Mass = 0.970 mol × 114.23 g/mol
Mass = 110.83 g of Octane