Answer:
K = G Mm / 9R
Explanation:
Expression for escape velocity V_e = 
Kinetic energy at the surface = 1/2 m V_e ²
= 1/2 x m x 2GM/R
GMm/R
Potential energy at the surface
= - GMm/R
Total energy = 0
At height 9R ( 8R from the surface )
potential energy
= - G Mm / 9R
Kinetic energy = K
Total energy will be zero according to law of conservation of mechanical energy
so
K - G Mm / 9R = 0
K = G Mm / 9R
Answer:
6.67 ohm
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) =20 ohm
Resistor 2 (R₂) = 20 ohm
Resistor 3 (R₃) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are arranged in parallel connection, the equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/20 + 1/20 + 1/20
1/R = (1 + 1 + 1) / 20
1/R = 3/20
Invert
R = 20/3
R = 6.67 ohm
Therefore, the equivalent resistance is 6.67 ohm.
Let u = the speed of the car at the instant when braking begins.
The braking distance is s = 62.3 m, the acceleration is a = -5.9 m/s², and the braking duration is t = 4.15 s.
Use the formula s = ut + (1/2)at² to obtain
(u m/s)*(4.15 s) + 0.5*(-5.9 m/s²)*(4.5 s)² = (62.3 m)
4.15u = 62.3 + 50.8064 = 113.1064
u = 27.2546 m/s
Let v m/s be the speed with which the car strikes the tree.
Then
v = 27.2546 - 5.9*4.15
= 2.7696 m/s
Answer: 2.77 m/s (nearest hundredth)