An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
Approximately
.
Explanation:
The refractive index of the air
is approximately
.
Let
denote the refractive index of the glass block, and let
denote the angle of refraction in the glass. Let
denote the angle at which the light enters the glass block from the air.
By Snell's Law:
.
Rearrange the Snell's Law equation to obtain:
.
Hence:
.
In other words, the angle of refraction in the glass would be approximately
.
Answer:
All of the above
Explanation:
because these are all senses of the body and therefore you're receiving signals from all of them all the time