<u>Given</u> :
- Amount = 20 kg
- Heat energy absorbed = 237,000 J
- Temperature change = 15 °C
<u>Formula applied</u> :

- Q = absorbed heat
- m = mass
- c = specific heat capacity
- ΔT = temperature change
Let's solve for c !
⇒ 237,000 = 20 × c × 15
⇒ c = 237,000 ÷ 300
⇒ 
∴ The specific heat capacity of granite is <u>790 J kg⁻¹ K⁻¹</u>.
Hfuch j hdhck kxgzj k hzy j.
Answer:
10.1g of H₂ are produced
Explanation:
To solve this question we need, first, to convert the mass of each reactant to moles and, using the chemical reaction, find limiting reactant. With limiting reactant we can find the moles of H2 and its mass:
<em>Moles Zn -Molar mass: 65.38g/mol-:</em>
307g * (1mol / 65.38g) = 4.696 moles
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
381g HCl * (1mol / 36.46g) = 10.45 moles
For a complete reaction of 10.45 moles of HCl are required:
10.45 moles HCl * (1mol Zn / 2mol HCl) = 5.22 moles Zn
As there are 4.696 moles of Zn, <em>Zn is the limiting reactant</em>
<em />
The moles of H₂ produced = Moles of Zn added = 4.696 moles. The mass is-Molar mass H₂ = 2.16g/mol-:
4.696 moles * (2.16g / mol) =
<h3>10.1g of H₂ are produced</h3>
Answer:
7.36
Explanation:
my teacher said that was the right answer
Answer:
a. 1.23 V
b. No maximum
Explanation:
Required:
a. Is there a minimum standard reduction potential that the half-reaction used at the cathode of this cell can have?
b. Is there a maximum standard reduction potential that the half-reaction used at the cathode of this cell can have?
The standard cell potential (E°cell) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E°cell = E°red, cat - E°red, an
If E°cell must be at least 1.10 V (E°cell > 1.10 V),
E°red, cat - E°red, an > 1.10 V
E°red, cat - 0.13V > 1.10 V
E°red, cat > 1.23 V
The minimum standard reduction potential is 1.23 V while there is no maximum standard reduction potential.