Answer:
Explanation:
a. The amplitude is the measure of the height of the wave from the midline to the top of the wave or the midline to the bottom of the wave (called crests). The midline then divides the whole height in half. Thus, the amplitude of this wave is 9.0 cm.
b. Wavelength is measured from the highest point of one wave to the highest point of the next wave (or from the lowest point of one wave to the lowest point of the next wave, since they are the same). The wavelength of this wave then is 20.0 cm. or 
c. The period, or T, of a wave is found in the equation
were f is the frequency of the wave. We were given the frequency, so we plug that in and solve for T:
so
and
T = .0200 seconds to the correct number of sig fig's (50.0 has 3 sig fig's in it)
d. The speed of the wave is found in the equation
and since we already have the frequency and we solved for the wavelength already, filling in:
and
v = 50.0(20.0) so
v = 1.00 × 10³ m/s
And there you go!
Is there supposed to be an image if so there is none
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
<u>v₂ = 306.12 m/s</u>