Answer:
Explanation:
This is an application of Newton's second Law.
Formula
F = m * a
F = 300 N
m = 100 kg
a = ?
F = m * a
300N = 100 kg * a Divide by 100
300N/100kg = a
a = 3 m/sec^2
Answer:
Explanation:
In order to solve this problem we need to make a free body diagram of the book and the forces that interact on it. In the picture below you can see the free body diagram with these forces.
The person holding the book is compressing it with his hands, thus exerting a couple of forces of equal magnitude and opposite direction with value F.
Now the key to solving this problem is to analyze the equilibrium condition (Newton's third law) on the x & y axes.
To find the weight of the book we simply multiply the mass of the book by gravity.
W = m*g
W = 1.3[kg] * 9.81[m/s^2]
W = 12.75 [N]
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s
<span> Light energy is verified by many scientists to be made of particles called photons. The amount of energy in each photon is related to its wavelength using the Planck-Einstein equation. </span><span>Nuclear energy the binding energy of atomic nuclei which holds the subatomic particles within the nucleus.</span>