Protect your eyes
Hope I helped!
Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:

Answer:
There is a force that has the same magnitude as that of the hammer applied on the astronaut and with direction away from the asteroid, movement is given by
F_hammer - F_Gravitation = m a
Explanation:
For this exercise we will propose its solution from Newton's third law, which states that every action has a reaction of equal magnitude, but felt different.
As it is in space, we must assume that it is not subject to the gravitational attraction of nearby bodies, except the asteroid that attracts it. When he extends his hand and hits the asteroid, he exerts a force on him, by Newton's third law he responds with a force of equal magnitude applied to the astronaut, therefore without the two they are not united they could separate if this force is greater than the force of universal attraction between the two.
In summary There is a force that has the same magnitude as that of the hammer applied on the astronaut and with direction away from the asteroid, movement is given by
F_hammer - F_Gravitation = m a
Answer:
it helps get jobs i guess
Explanation:
Answer:
Power is energy divided by time taken for it to happen
Explanation:
Energy= 7500J
times taken =2.3s
thus power=7500J÷2.3s
=3260.87(J/s) or 3260.87W