1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ElenaW [278]
3 years ago
10

How much heat transfer is necessary to raise the temperature of a 13.6 kg piece of ice from −20.0ºC to 130ºC? specific heat capa

city of water is 4184 J/kg C and specific latent heat of fusion is 334000 J/kg.
8535360 J
4542400 J
458720900 J
13077760 J
Physics
1 answer:
Talja [164]3 years ago
7 0

Answer:

A: 8535360 J

Explanation:

We are given;

mass; m = 13.6 kg

Initial temperature; T1 = -20° C

Final temperature; T2 = 130° C

Specific heat capacity; c = 4184 J/kg.°C

Specific latent heat of fusion; L = 334000 J/kg.

Since we are dealing with change in temperature, then we will use the heat energy formula for specific heat capacity.

Q = mcΔt

Thus;

Q = 13.6 × 4184 × (130 - (-20))

Q = 13.6 × 4184 × 150

Q = 8535360 J

You might be interested in
What is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
Art [367]

CORRECT ANSWER:

a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.

STEP-BY-STEP EXPLANATION:

The complete question from book is

According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?

a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.

b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.

c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.

d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.

e- None of the other answer options is correct.

3 0
3 years ago
A projectile is fired over level ground with an initial velocity that has a vertical component of 20 m/s and a horizontal compon
Anettt [7]
First of all, let's write the equation of motions on both horizontal (x) and vertical (y) axis. It's a uniform motion on the x-axis, with constant speed v_x=30 m/s, and an accelerated motion on the y-axis, with initial speed v_y=20 m/s and acceleration g=9.81 m/s^2:
S_x(t)=v_xt
S_y(t)=v_y t- \frac{1}{2} gt^2
where the negative sign in front of g means the acceleration points towards negative direction of y-axis (downward).

To find the distance from the landing point, we should find first the time at which the projectile hits the ground. This can be found by requiring
S_y(t)=0
Therefore:
v_y t -  \frac{1}{2}gt^2=0
which has two solutions:
t=0 is the time of the beginning of the motion,
t= \frac{2 v_y}{g} = \frac{2\cdot 20 m/s}{9.81 m/s^2}=4.08 s is the time at which the projectile hits the ground.

Now, we can find the distance covered on the horizontal axis during this time, and this is the distance from launching to landing point:
S_x(4.08 s)=v_x t=(30 m/s)(4.08 s)=122.4 m
4 0
3 years ago
1d. Conservation of energy is demonstrated in this roller coaster example.
Dvinal [7]

Answer:

can you clear your question I can't understand

6 0
3 years ago
A lady bug is sitting on the bottom of a can while you twirl it overhead on a string that is 65.0
MA_775_DIABLO [31]

The linear speed of the ladybug is 4.1 m/s

Explanation:

First of all, we need to find the angular speed of the lady bug. This is given by:

\omega=\frac{2\pi}{T}

where

T is the period of revolution

The period of revolution is the time taken by the ladybug to complete one revolution: in this case, since it does 1 revolution every second, the period is 1 second:

T = 1 s

Therefore, the angular speed is

\omega=\frac{2\pi}{1 s}=6.28 rad/s

Now we can find the linear speed of the ladybug, which is given by

v=\omega r

where:

\omega=6.28 rad/s is the angular speed

r = 65.0 cm = 0.65 m is the distance of the ladybug from the axis of rotation

Substituting, we find

v=(6.28)(0.65)=4.1 m/s

Learn more about angular speed:

brainly.com/question/9575487

brainly.com/question/9329700

brainly.com/question/2506028

#LearnwithBrainly

7 0
4 years ago
Explain why it may make more sense to colonize on Venus, rather than Mars.
SVEN [57.7K]

Venus is closer, relatively the same size as the earth and has an atmosphere

6 0
3 years ago
Read 2 more answers
Other questions:
  • Most calculators operate on 6.0 V. If, instead of using batteries, you obtain 6.0 V from a transformer plugged into 110-V house
    14·1 answer
  • The compound LiBr is an example of
    12·1 answer
  • Mike Powell holds the record for the long jump of 8.95 m, established in 1991. If he left the ground at an angle of 18.8°, what
    15·1 answer
  • An ideal gas expands at a constant total pressure of 3.0 atm from 400 mL to 600 mL. heat then flows out of the gas at a constant
    11·1 answer
  • A car starts from rest and after 10 seconds is traveling at 20 m/s. Assuming that it continues to accelerate at the same rate it
    8·1 answer
  • What occurs at thermal equilibrium?
    7·2 answers
  • You are given three pieces of wire that have different shapes (dimensions). You connect each piece of wire separately to a batte
    6·1 answer
  • How is the average American diet affected by our current food system?"
    6·1 answer
  • What does a model of a light wave tell us about<br> brightness and color?
    6·1 answer
  • What is the wavelength associated with an electron with a velocity of 4.8x10*5 m/s?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!