The work done by the shopping basket is 147 J.
<h3>When is work said to be done?</h3>
Work is said to be done whenever a force moves an object through a certain distance.
The amount of work done on the shopping basket can be calculated using the formula below.
Formula:
Where:
- W = Amount of work done by the basket
- m = mass of the shopping basket
- h = height of the shopping basket
- g = acceleration due to gravity.
Form the question,
Given:
- m = 10 kg
- h = 1.5 m
- g = 9.8 m/s²
Substitute these values into equation 2
- W = 10(1.5)(9.8)
- W = 147 J.
Hence, The work done by the shopping basket is 147 J.
Learn more about work done here: brainly.com/question/18762601
Answer:
<em>The range is 35.35 m</em>
Explanation:
<u>Projectile Motion</u>
It's the type of motion that experiences an object projected near the Earth's surface and moves along a curved path exclusively under the action of gravity.
Being vo the initial speed of the object, θ the initial launch angle, and
the acceleration of gravity, then the maximum horizontal distance traveled by the object (also called Range) is:

The projectile was launched at an angle of θ=30° with an initial speed vo=20 m/s. Calculating the range:



The range is 35.35 m
Connection to Big Idea about energy: Gravity creates gravitational potential energy. Gravitational energy relies on the masses of two bodies and their distance.
Connection to Big Idea about the universe: Gravitational force is exerted by all objects with mass throughout the Universe. It is what keeps the Earth and the planets in orbit around the Sun, and our Solar System in orbit around the centre of the Milky Way. Gravity is one of the forces involved in the birth of stars, their evolution and finally their death.
Connection to Big Idea about Earth: The gravitational force is responsible for many physical properties of Earth and consequently it affects the existence and the properties of living creatures on it. For instance, the existence, the chemical composition and the structure of Earth’s atmosphere was determined by Earth’s gravitational force.
Answer:
T= 38.38 N
Explanation:
Here
mass of can = m = 3 kg
g= 9.8 m/sec2
angle θ = 40°
From figure we see the vertical and horizontal component of tension force T
If the can is to slip - then horizontal component of tension force should become equal to force of friction.
First we find force of friction
Fs= μ R
where
μ = 0.76
R = weight of can = mg = 3 × 9.8 = 29.4 N
Now horizontal component of tension
Tx= T cos 40 = T× 0.7660 N
==>T× 0.7660 = 29.4
==> T= 38.38 N
Answer:
B) The amount of time the torque is applied to the disk, because the time interval is related to the angular impulse of the disk.
Explanation:
Angular impulse = Torque x time
= change in angular momentum
So,
Torque x time = change in angular momentum
change in angular momentum = Torque x time
Torque is already known .
Hence to know the change in angular momentum what is needed to know is time duration of torque acting on the body .