Take the missile's starting position to be the origin. Assuming the angles given are taken to be counterclockwise from the positive horizontal axis, the missile has position vector with components


The missile's final position after 9.20 s has to be a vector whose distance from the origin is 19,500 m and situated 32.0 deg relative the positive horizontal axis. This means the final position should have components


So we have enough information to solve for the components of the acceleration vector,
and
:


The acceleration vector then has direction
where

Using coils of fewer turns on the electromagnet
Mercury is very harmful to the average human being. the mercury can easily be released from the lamp if the lamp is knocked over and broken. mercury is also harmful if inhaled. sodium on the other hand is not harmful in any way.
A) 140 degrees
First of all, we need to find the angular velocity of the Ferris wheel. We know that its period is
T = 32 s
So the angular velocity is

Assuming the wheel is moving at constant angular velocity, we can now calculate the angular displacement with respect to the initial position:

and substituting t = 75 seconds, we find

In degrees, it is

So, the new position is 140 degrees from the initial position at the top.
B) 2.7 m/s
The tangential speed, v, of a point at the egde of the wheel is given by

where we have

r = d/2 = (27 m)/2=13.5 m is the radius of the wheel
Substituting into the equation, we find

With the addition of vectors we can find that the correct answer is:
C) Q> P > R = S > T
The addition of vectors must be done taking into account that they have modulus and direction. The analytical method is one of the easiest methods, the method to do it is:
- Set a Cartesian coordinate system
- Decompose vectors into their components in a Cartesian system
- Perform the algebraic sums on each axis
- Find the resultant vector using the Pythagoras' Theorem to find the modulus and trigonometry to find the direction.
In this exercise indicate that the modulus of all vectors is the same, suppose that the value of the modulus is A.
We fix a Cartesian coordinate system with the horizontal x axis and the vertical y axis, we can see that we do not need to perform any decomposition, so we perform the algebraic sums
Diagram P
x-axis
x = 2A
y-axis
y = 2A
The modulus of the resulting vector can be found with the Pythagorean Theorem
P =
P =
P = 2 √2 A
Diagram Q
x-axis
x = 3A
y-axis
y = A
Resulting
Q =
Q =
Q = 
Diagram R
x- axis
x = 0
y-axis
y = 2 A
Resulting
R =
R =
Diagram S
x-axis
x = 2 A
y-axis
y = 0
Resulting
S = 2A
Diagram T
x- axis
x = 0
y-axis
y = 0
Resultant T = 0
We order the diagram from highest to lowest
Q> P> R = S> T
When reviewing the different answers, the correct one is:
C. Q> P> R = S> T
Learn more about adding vectors here:
brainly.com/question/14748235