Answer:
Explanation:
24 - gauge wire , diameter = .51 mm .
Resistivity of copper ρ = 1.72 x 10⁻⁸ ohm-m
R = ρ l / s
1.72x 10⁻⁸ / [3.14 x( .51/2)² x 10⁻⁶ ]
= 8.42 x 10⁻² ohm
= .084 ohm
B ) Current required through this wire
= 12 / .084 A
= 142.85 A
C )
Let required length be l
resistance = .084 l
2 = 12 / .084 l
l = 12 / (2 x .084)
= 71.42 m
Answer:
Distance =60m, Time = 6s, Speed = ?
Speed = distance/time
= 60/6
=10m/s
Explanation:
Hope that this is helpful.
Have a nice day.
Answer:
the molecular formula for the gas is NO₂
Explanation:
since it contains
Nitrogen = n → 30.45%
Oxygen = o → 69.55%
and 30.45%+69.55% = 100% , then the gas only contains nitrogen and oxygen
Also we know that the proportion of oxygen over nitrogen is
proportion of oxygen over nitrogen = moles of oxygen / moles of nitrogen
since
moles = mass / molecular weight
then for a sample of 100 gr of the unknown gas
mass of oxygen = 69.55%*100 gr = 69.55 gr
mass of Nitrogen = 30.45%*100 gr = 30.45 gr
proportion of oxygen over nitrogen = (mass of oxygen/ molecular weight)/(mass of nitrogen / molecular weight of nitrogen ) = (69.55 gr/ 16 gr/mol) /( 30.45 gr /14 gr/mol) = 1.998 mol of O/ mol of N≈ 2 mol of O/ mol of N
therefore there are 2 atoms of oxygen per atom of nitrogen
thus the molecular formula for the gas is:
NO₂
Answer:
Explanation:
As a skydiver falls, he accelerates downwards, gaining speed with each second. The increase in speed is accompanied by an increase in air resistance. This force of air resistance counters the force of gravity.
Low mass: Live for billions (trillions?) of years. The first low mass red dwarfs in this universe still haven't died off yet, so we aren't completely sure what happens when they "die."
<span>Very High Mass: Run through their fuel exceedingly fast. *Die* relatively quickly (in the range of tens to hundreds of millions of years instead of billions and beyond) and go out with style, Supernova that will leave behind a neutron star (the *kind of very high mass stars" end this way) or a black hole (the *very very high mass stars* end this way.)</span>