Explanation:
the velocity graph of a ball mass 20mg moving along a straight line
Answer:
60 cm
Explanation:
We are given;
- Focal length of a concave mirror as 30.0 cm
- Object distance is 15.0 cm
We are required to determine the radius of curvature.
We need to know that the radius of a curvature is the radius of a circle from which the curved mirror is part.
We also need to know that the radius of curvature is twice the focal length of a curved mirror.
Therefore;
Radius of curvature = 2 × Focal length
Therefore;
Radius of curvature = 2 × 30 cm
= 60 cm
Have a universal record base. Everyone is able to understand the data compiled since the same measurement systems are being used around the world. This is just to simplify all of the information.
John can run with the velocity of 5 m/s
Explanation:
- Kinetic energy is defined as the energy is being used to do an activity, basically energy associated with the motion of objects in the universe.
- The formula used to find the kinetic energy of an object is k =
where as k represented as kinetic energy, m is the mass of the object and v is the velocity of the given object.
- Here, to find the answer we have to re-write the equation as
![v = \sqrt[2]{\frac{2 k}{m} }](https://tex.z-dn.net/?f=v%20%3D%20%5Csqrt%5B2%5D%7B%5Cfrac%7B2%20k%7D%7Bm%7D%20%7D)
- Given, the mass of the object, here it is John = 80 kg, energy needs to be converted to kinetic energy, k = 1000 J.
- Hence, substitute all the values, then you would velocity as 5 m/s