Answer:
It must be high do to the gravity
Explanation:
Answer:
70m/s²
Explanation:
we will use the first equation of Dalton to find it
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:
R = internal resistance r + resistance connected rv
R = r + rv
Now find the current:
V 1= IR
I = R / V1
find the voltage at the battery terminal (which is net of internal resistance) using
V 2= IR
So the voltage at the terminal is:
V = V2 - V1
This is the potential difference vmeter measured by the voltmeter.
Answer:
The K.E is maximum when the child is at the vertical position and the P.E is maximum at the extreme deviated position from the vertical.
Explanation:
- A child is swinging on swing up and down has both kinetic and potential energy.
- The total mechanical energy of the system is conserved throughout the system. At any instant the total mechanical energy is given by,
E = K.E + P.E
- The K.E is maximum when the child is at the vertical position.
- The P.E is maximum at the extreme deviated position from the vertical.
- And when K.E is maximum P.E becomes minimum and vice versa as per the law of conservation of energy.