1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
horsena [70]
3 years ago
6

A sling psychrometer works because the amount of cooling that occurs in the wet bulb is directly proportional to the ----- of th

e air
Physics
1 answer:
ad-work [718]3 years ago
5 0
<u>Temperature of the air</u>

According to sources, the most probable answer to this query is that the wet bulb is directly proportional to the temperature of the air. Thank you for your question. Please don't hesitate to ask in Brainly your queries. 
You might be interested in
What characterizes static stretching? A. having a partner hold limbs in a stretch position B. assuming and holding a stretch pos
balandron [24]

Answer:

It is B

Trust me it is B

7 0
3 years ago
Read 2 more answers
4
tensa zangetsu [6.8K]

Answer:

C. amount of charge on the source charge.

Explanation:

Electric field lines can be defined as a graphical representation of the vector field or electric field.

Basically, it was first introduced by Michael Faraday and it is typically a curve drawn to the tangent of a point is in the direction of the net field acting on each point.

The number, or density, of field lines on a source charge indicate the amount of charge on the source charge. Therefore, the density of field lines on a source charge is directly proportional to quantity of charge on the source.

8 0
3 years ago
In the steady state 1.2 ✕ 1018 electrons per second enter bulb 1. There are 6.3 ✕ 1028 mobile electrons per cubic meter in tungs
bekas [8.4K]

Answer:

E=12.2V/m

Explanation:

To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.

The equation is given by,

V=\frac{I}{nAq}

Where,

V= Drift Velocity

I= Flow of current

n= number of electrons

q = charge of electron

A = cross-section area.

For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is

\frac{I}{q} = 1.2*10^{18}

A= 1.3*10^{-8}m^2

n=6.3*10^{28} e/m^3

\omicron{O} = 1.2*10^{-4}(m/s)(N/c) Mobility

We can find the drift velocity replacing,

V = \frac{1.2*10^{18}}{(1.3*10^{-8})(6.3*10^{28})}

V= 1.465*10^-3m/s

The electric field is given by,

E= \frac{V}{\omicron{O}}

E=\frac{1.465*10^-3}{1.2*10^{-4}}

E=12.2V/m

7 0
4 years ago
A flywheel of mass 182 kg has an effective radius of 0.62 m (assume the mass is concentrated along a circumference located at th
musickatia [10]

Answer:

A)5524J,

B) 29.2Nm

Explanation:

This question can be treated using work- energy theorem

Work= change in Kinectic energy

W= Δ KE

Work= difference between the final Kinectic energy and intial Kinectic energy.

We know that

Kinectic energy= 1/2 mv^2 .............eqn(1)

This can be written in term of angular velocity, as

KE= 1/2 I

4 0
3 years ago
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
4 years ago
Other questions:
  • Is the force of gravity stronger on a piece of crumpled paper or a normal piece of flat paper?
    8·1 answer
  • An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad / s). if a particular disk is spun at 79
    9·1 answer
  • Martha is cycling at a speed of 20 kilometers per hour. How long will it take her to cover a distance of 60 kilometers? speed=di
    11·2 answers
  • The Moon takes about 27 days to orbit the Earth. Assuming a circular orbit, how fast is it orbiting? Express your answer in km/h
    11·1 answer
  • What is the law of gravity?
    11·1 answer
  • determine the quantity of work done when a crane lifts a 100-n block from 2m above the ground to 6m above the ground
    12·2 answers
  • A record turntable is rotating at 33 rev/min. A watermelon seed is on the turntable 4.0 cm from the axis of rotation. (a) Calcul
    9·1 answer
  • A train having speed of 85 km/h takes 5 hours to travel from Kerala to Karnataka. Calculate the distance between Kerala and Karn
    9·1 answer
  • Two vectors have magnitudes 3 and 4 . how are the directions of the two vectors related if: a/the sum has magnitude 7.0 ​
    9·1 answer
  • Determine the launch speed of a horizontally launched projectile that lands 26.3m from the base of a 19.3m high cliff
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!