Answer: A maximum of 1 hour
Explanation:
Read your lesson buddy!!
Answer:
Explanation:
Products of oil in our everyday life:
(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c
(2) Asphalt : Used extensively to make Motor Road, highways
(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c
(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.
(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.
Answer:
b) False
Explanation:
Viscosity:
Viscosity is a fluid property and comes in the picture when fluid in the motion.In Simple words viscosity is the frictional force offered by fluid between the fluid layer.Viscosity provides a resistant to flow of fluid.
Generally viscosity are of two types
1.Dynamics viscosity
2.Kinematics viscosity
Generally in liquids when temperature of fluid is increases then molecular force between fluid particle goes to decreases.Due to this viscosity of liquids will decrease.
So our option b is right.
Answer:
hello your question is incomplete attached below is the missing equation related to the question
answer : 40.389° , 38.987° , 38° , 39.869° , 40.265°
Explanation:
<u>Determine the friction angle at each depth</u>
attached below is the detailed solution
To calculate the vertical stress = depth * unit weight of sand
also inverse of Tan = Tan^-1
also qc is in Mpa while σ0 is in kPa
Friction angle at each depth
2 meters = 40.389°
3.5 meters = 38.987°
5 meters = 38.022°
6.5 meters = 39.869°
8 meters = 40.265°
Answer:
Hello your question has some missing information below are the missing information
The refrigerant enters the compressor as saturated vapor at 140kPa Determine The coefficient of performance of this heat pump
answer : 2.49
Explanation:
For vapor-compression refrigeration cycle
P1 = P4 ; P1 = 140 kPa
P2( pressure at inlet ) = P3 ( pressure at outlet ) ; P2 = 800 kPa
<u>From pressure table of R 134a refrigerant</u>
h1 ( enthalpy of saturated vapor at 140kPa ) = 239.16 kJ/kg
h2 ( enthalpy of saturated liquid at P2 = 800 kPa and t = 60°C )
= 296.8kJ/kg
h3 ( enthalpy of saturated liquid at P3 = 800 kPa ) = 95.47 kJ/kg
also h4 = 95.47 kJ/kg
To determine the coefficient of performance
Cop = ( h1 - h4 ) / ( h2 - h1 )
∴ Cop = 2.49