1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Illusion [34]
3 years ago
5

Identify SIX (6) objectives of maintenance.​

Engineering
1 answer:
Rasek [7]3 years ago
8 0

Answer:

to optimize the reliability of equipment and infrastructure;

- to ensure that equipment and infrastructure are always in good condition;

- to carry out prompt emergency repair of equipment and infrastructure so as to secure the best possible availability for production;

- to enhance, through modifications, extensions, or new low-cost items, the productivity of existing equipment or production capacity;

- to ensure the operation of equipment for production and for the distribution of energy and fluids;

- to improve operational safety;

- to train personnel in specific maintenance skills;

- to advise on the acquisition, installation and operation of machinery;

- to contribute to finished product quality;

- to ensure environmental protection.

Explanation:

pick whichever you want

You might be interested in
A fatigue test is performed on 69 rotating specimens made of 5160H steel. The measured number of cycles to failure (L in kcycles
tensa zangetsu [6.8K]

Answer:

(a) Mean = 122.9, σ = 30.071

(b) No. of failed specimens at less than 115k cycles are 27.

(c) μ = 39.07

Explanation:

We are given:

L  60  70  80  90  100  110  120  130  140  150  160  170  180  190  200  210

f    2     1    3     5     8     12     6     10     8     5     2      3      2      1       0      1

(a) First we need to calculate the mean and standard deviation. The formula for calculating mean is:

Mean = ∑fx/∑f

And for standard deviation we have:

S.D. = √Var

Var = ∑fx²/∑f - (Mean)²

∑fx = (2*60) + (1*70) + (3*80) + (5*90) + (8*100) + (12*110) + (6*120) + (10*130) + (8*140) + (5*150) + (2*160) + (3*170) + (2*180) + (1*190) + (0*200) + (1*210)

         = 120 + 70 + 240 + 450 + 800 + 1320 + 720 + 1300 + 1120 + 750 + 320 + 510 + 360 + 190 + 0 + 210

∑fx = 8480

Mean = ∑fx/∑f

          = 8480/69

Mean = 122.9  

∑fx² = (2*60²) + (1*70²) + (3*80²) + (5*90²) + (8*100²) + (12*110²) + (6*120²) + (10*130²) + (8*140²) + (5*150²) + (2*160²) + (3*170²) + (2*180²) + (1*190²) + (0*200²) + (1*210²)

   =7200+4900+19200+40500+80000+145200+86400+169000+156800+112500+51200+86700+64800+36100+0+44100

∑fx² = 1104600

Var = ∑fx²/∑f - (Mean)²

     = 1104600/69 - (122.9)²

     = 16008.69565 - 15104.41

Var = 904.2856

S.D = √Var

σ = √904.2856

σ = 30.071

(b) Let X be the number of failed specimen.

We will use the z-score to calculate the probability. The formula for z-score is:

z = (X-μ)/σ

P(X<115) = P(z<(115-122.9)/30.071)

              = P(z<-0.26)

Using the normal distribution probability table, we can compute the value of  P(z<-0.26).

P(X<115) = 0.3974

So, no. of failed specimens at less than 115k cycles are: 0.3974*69 = 27 specimens

(c) σ = 30.071

P(x<115) = 0.99

P(z<(115-μ)/30.071) = 0.99

From the normal distribution table we find that 0.99 lies between the z values 2.52 and 2.33. Hence, we get 2.525 as the z-value at which the probability is 0.99.

z = (x-μ)/σ

2.525 = (115 - μ)/30.071

75.93 = 115 - μ

μ = 115 - 75.93

μ = 39.07

4 0
3 years ago
Convert A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D + AB'C'D' + AB'C'D+ AB'CD' to SOP form
bazaltina [42]

Answer:

thats really hard how could you answerthis hhhhhhh

6 0
2 years ago
Read 2 more answers
According to fire regulations in a town, the pressure drop in a commercial steel, horizontal pipe must not exceed 2.0 psi per 25
bonufazy [111]

Answer:

6.37 inch

Explanation:

Thinking process:

We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.

To determine the pressure drop in the pipe:

Using the Bernoulli equation for mass conservation:

\frac{P1}{\rho } + \frac{v_{2} }{2g} +z_{1}  = \frac{P2}{\rho } + \frac{v2^{2} }{2g} + z_{2} + f\frac{l}{D} \frac{v^{2} }{2g}

thus

\frac{P1-P2}{\rho }  = f\frac{l}{D} \frac{v^{2} }{2g}

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.

Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F

from the tables

Re= 2.01 × 10⁵

Hence, f = 0.018

Therefore, pressure drop, (P1-P2)/p = 2.70 ft

This occurs at ae presure change of 1.17 psi

Correlating with the chart, we find that the diameter will be D= 0.513

                                                                                                      = <u>6.37 in Ans</u>

7 0
3 years ago
Verify if 83 is a term in the arithmetic sequence 11,15,19,23
EleoNora [17]

Answer:

yes, it is

Explanation:

The sequence: (+4)

23,27,31,35,39,43,47,51,55,59,63,67,71,75,79,83

Hope this helps! :)

3 0
3 years ago
1. (5 pts) An adiabatic steam turbine operating reversibly in a powerplant receives 5 kg/s steam at 3000 kPa, 500 °C. Twenty per
KiRa [710]

Answer:

temperature of first extraction 330.8°C

temperature of second extraction 140.8°C

power output=3168Kw

Explanation:

Hello!

To solve this problem we must use the following steps.

1. We will call 1 the water vapor inlet, 2 the first extraction at 100kPa and 3 the second extraction at 200kPa

2. We use the continuity equation that states that the mass flow that enters must equal the two mass flows that leave

m1=m2+m3

As the problem says, 20% of the flow represents the first extraction for which 5 * 20% = 1kg / s

solving

5=1+m3

m3=4kg/s

3.

we find the enthalpies and temeperatures in each of the states, using thermodynamic tables

Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties

4.we find the enthalpy and entropy of state 1 using pressure and temperature

h1=Enthalpy(Water;T=T1;P=P1)

h1=3457KJ/kg

s1=Entropy(Water;T=T1;P=P1)

s1=7.234KJ/kg

4.

remembering that it is a reversible process we find the enthalpy and the temperature in the first extraction with the pressure 1000 kPa and the entropy of state 1

h2=Enthalpy(Water;s=s1;P=P2)

h2=3116KJ/kg

T2=Temperature(Water;P=P2;s=s1)

T2=330.8°C

5.we find the enthalpy and the temperature in the second extraction with the pressure 200 kPav y the entropy of state 1

h3=Enthalpy(Water;s=s1;P=P3)

h3=2750KJ/kg

T3=Temperature(Water;P=P3;s=s1)

T3=140.8°C

6.

Finally, to find the power of the turbine, we must use the first law of thermodynamics that states that the energy that enters is the same that must come out.

For this case, the turbine uses a mass flow of 5kg / s until the first extraction, and then uses a mass flow of 4kg / s for the second extraction, taking into account the above we infer the following equation

W=m1(h1-h2)+m3(h2-h3)

W=5(3457-3116)+4(3116-2750)=3168Kw

7 0
3 years ago
Other questions:
  • Marcelo es muy bueno resolviendo adivinanzas y acertijos. Por eso, estaba totalmente disgustado cuando se dio cuenta de que no e
    12·1 answer
  • A lab technician is ordered to take a sample of your blood. As she inserts the needle, she says, "My, you have tough skin!" What
    14·1 answer
  • Select the answer that shows how the recognition of depreciation expense
    10·1 answer
  • Suppose there is a mobile application that can run in two modes: Lazy or Eager. In Lazy Mode, the execution time is 3.333 second
    11·1 answer
  • Respond with TRUE if the symbol of the valve shown below is
    10·1 answer
  • In homes today, what is behind the reason for flashover fires occurring much more rapidly than in the past generations?
    8·1 answer
  • An organization sets its standards for quality according to the best product it can produce.
    11·2 answers
  • What is code in Arduino to turn led on and off
    10·1 answer
  • All of the following are examples of capital intensive industries EXCEPT: *
    15·2 answers
  • s) Use Cramer’s rule to solve the system below, and state the condition at which solution exists. ax+by = 1 cx+dy =−1
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!