<span>(a) This is a binomial
experiment since there are only two possible results for each data point: a flight is either on time (p = 80% = 0.8) or late (q = 1 - p = 1 - 0.8 = 0.2).
(b) Using the formula:</span><span>
P(r out of n) = (nCr)(p^r)(q^(n-r)), where n = 10 flights, r = the number of flights that arrive on time:
P(7/10) = (10C7)(0.8)^7 (0.2)^(10 - 7) = 0.2013
Therefore, there is a 0.2013 chance that exactly 7 of 10 flights will arrive on time.
(c) Fewer
than 7 flights are on time means that we must add up the probabilities for P(0/10) up to P(6/10).
Following the same formula (this can be done using a summation on a calculator, or using Excel, to make things faster):
P(0/10) + P(1/10) + ... + P(6/10) = 0.1209
This means that there is a 0.1209 chance that less than 7 flights will be on time.
(d) The probability that at least 7 flights are on time is the exact opposite of part (c), where less than 7 flights are on time. So instead of calculating each formula from scratch, we can simply subtract the answer in part (c) from 1.
1 - 0.1209 = 0.8791.
So there is a 0.8791 chance that at least 7 flights arrive on time.
(e) For this, we must add up P(5/10) + P(6/10) + P(7/10), which gives us
0.0264 + 0.0881 + 0.2013 = 0.3158, so the probability that between 5 to 7 flights arrive on time is 0.3158.
</span>
Answer:
Step-by-step explanation:
Answer:
tan (C) = 2.05
Step-by-step explanation:
Given:
A right angled triangle CDE right angled at ∠D.
Side CD = 39
Side DE = 80
Side CE = 89
We know, from trigonometric ratios that, the tangent of any angle is equal to the ratio of the opposite side to the angle and the adjacent side of the angle.
Therefore, tangent of angle C is given as:

Plug in the given values and solve for angle C.This gives,

Therefore, the measure of tangent of angle C is 2.05.
Answer: B
Step-by-step explanation: if you divide 27/30 by 3 you get 9/10