Answer:
Well, each ml of water requires one calorie to go up 1 degree Celsius, so this liter of water takes 1000 calories to go up 1 degree Celsius.
Explanation:
Answer:
C
Explanation:
The change in momentum of x has to be the opposite of the change in momentum of Y because the momentum is just transferred from one to another. But I'm still trying to figure it out how to calculate.
Answer:
(a) A = 1 mm
(b) 
(c) ![a_{max}=606.4 m/s^{2}/tex]Explanation:Distance moved back and forth = 2 mm Frequency, f = 124 HzSo, amplitude is the half of the distance traveled back and forth. (a) So, amplitude, A = 1 mm(b) Angular frequency, ω = 2 π f = 2 x 3.14 x 124 = 778.72 rad/s The formula for the maximum speed is given by [tex]V_{max}=\omega \times A](https://tex.z-dn.net/?f=a_%7Bmax%7D%3D606.4%20m%2Fs%5E%7B2%7D%2Ftex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EDistance%20moved%20back%20and%20forth%20%3D%202%20mm%20%3C%2Fp%3E%3Cp%3EFrequency%2C%20f%20%3D%20124%20Hz%3C%2Fp%3E%3Cp%3ESo%2C%20amplitude%20is%20the%20half%20of%20the%20distance%20traveled%20back%20and%20forth.%20%3C%2Fp%3E%3Cp%3E%28a%29%20So%2C%3Cstrong%3E%20amplitude%2C%20A%20%3D%201%20mm%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%28b%29%20Angular%20frequency%2C%20%CF%89%20%3D%202%20%CF%80%20f%20%3D%202%20x%203.14%20x%20124%20%3D%20778.72%20rad%2Fs%20%3C%2Fp%3E%3Cp%3EThe%20formula%20for%20the%20maximum%20speed%20is%20given%20by%20%3C%2Fp%3E%3Cp%3E%5Btex%5DV_%7Bmax%7D%3D%5Comega%20%5Ctimes%20A)


(c) The formula for the maximum acceleration is given by


[tex]a_{max}=606.4 m/s^{2}/tex]
Answer:
The average velocity is
and
respectively.
Explanation:
Let's start writing the vertical position equation :

Where distance is measured in meters and time in seconds.
The average velocity is equal to the position variation divided by the time variation.
= Δx / Δt = 
For the first time interval :
t1 = 5 s → t2 = 8 s
The time variation is :

For the position variation we use the vertical position equation :

Δx = x2 - x1 = 1049 m - 251 m = 798 m
The average velocity for this interval is

For the second time interval :
t1 = 4 s → t2 = 9 s


Δx = x2 - x1 = 1495 m - 125 m = 1370 m
And the time variation is t2 - t1 = 9 s - 4 s = 5 s
The average velocity for this interval is :

Finally for the third time interval :
t1 = 1 s → t2 = 7 s
The time variation is t2 - t1 = 7 s - 1 s = 6 s
Then


The position variation is x2 - x1 = 701 m - (-1 m) = 702 m
The average velocity is
