Answer:
P = 33.6 [N]
Explanation:
To solve this problem we must use Newton's second law, which tells us that the sum of forces on a body is equal to the product of mass by acceleration.
∑F = m*a
where:
F = forces [N]
m = mass = 14 [kg]
a = acceleration = 6 [m/s²]
![F = 14*6\\F = 84 [N]](https://tex.z-dn.net/?f=F%20%3D%2014%2A6%5C%5CF%20%3D%2084%20%5BN%5D)
In the second part of this problem we must find the work done, where the work in physics is known as the product of force by distance, it is important to make it clear that force must be applied in the direction of movement.

where:
W = work [J]
F = force = 84 [N]
d = displaciment = 40 [m]
![W = 84*40\\W = 3360 [J]](https://tex.z-dn.net/?f=W%20%3D%2084%2A40%5C%5CW%20%3D%203360%20%5BJ%5D)
Finally, the power can be calculated by the relationship between the work performed in a given time interval.

where:
P = power [W]
W = work = 3360 [J]
t = time = 100 [s]
Now replacing:
![P=3360/100\\P=33.6[W]](https://tex.z-dn.net/?f=P%3D3360%2F100%5C%5CP%3D33.6%5BW%5D)
The power is given in watts
alpha is the excess return on an investment after adjusting for market related volatility and random fluctuations.
beta is a measure of volatility relative to a benchmark ,such as the S&P 500.
Explanation:
alpha and beta are two different parts of an equation used to explain the performance of stocks and investments funds. But in maths alpha and beta is the Greek alphabet
The X and Y components of the force are 90.63 Newton and 42.26 Newton respectively.
<u>Given the following data:</u>
- Angle of inclination = 25°
To determine the X and Y components of the force:
<h3>The horizontal component (X) of a force:</h3>
Mathematically, the horizontal component of a force is given by this formula:

Fx = 90.63 Newton.
<h3>The vertical component (Y) of tensional force:</h3>
Mathematically, the vertical component of a force is given by this formula:

Fy = 42.26 Newton.
Read more on horizontal component here: brainly.com/question/4080400
The relevant formula we can use in this case would be:
h = v0 t + 0.5 g t^2
where,
h = height or distance travelled
v0 = initial velocity = 0 since it was dropped
t = time = 1 seconds
g = 9.8 m/s^2
So calculating for height h:
h = 0 + 0.5 * 9.8 m/s^2 * (1 s)^2
<span>h = 4.9 meters</span>