Answer:
The lenses with different focal length are four.
Explanation:
Given that,
Radius of curvature R₁= 4
Radius of curvature R₂ = 8
We know ,
Refractive index of glass = 1.6
When, R₁= 4, R₂ = 8
We need to calculate the focal length of the lens
Using formula of focal length

Put the value into the formula



When , R₁= -4, R₂ = 8
Put the value into the formula



When , R₁= 4, R₂ = -8
Put the value into the formula



When , R₁= -4, R₂ = -8
Put the value into the formula



Hence, The lenses with different focal length are four.
Answer:
Twice
Step-by-Step Explanation:
Time between 7:00 PM and 1:00 AM: 6 hours
Distance: 4818km
Since the distance is 4818km, and the time is 6 hours, you divide 4818 by 6.
803.0000015999 km/h.
The average speed is 803 km/h
Which considering the ideal case scenario if the plane starts at 0 reaches the speed of 803 and the end reduces its speed from 803 to 0. This means we have come across the value of 800 at least twice. Hence, the plane was travelling at a speed of 800 km/h at least 2 times.
<h3><u>Answer;</u></h3>
the north end to the south end.
<h3><u>Explanation;</u></h3>
- Magnetic field lines from a bar magnet form lines that are closed. The direction of magnetic field is taken to be outward from the North pole of the magnet and in to the South pole of the magnet.
- A magnetic field refers to the area surrounding a magnet where a force is exerted on certain objects. These lines are spread out of the north end of the magnet.
- The magnetic field lines resemble a bubble.
Answer:
x_total = 600 m
Explanation:
This is an exercise and kinematics, let's find the time it takes to reach the velocity 20 m / s
v = v₀ + a t
as part of rest v₀ = 0
t = v / a
t = 20/2
t = 10 s
let's find the distance traveled in this time
x₁ = vo t + ½ a t2
x₁ = 0 + ½ 2 10²
x₁ = 100 m
The remaining time is
t₂ = 35 - t
t₂ = 35 - 10
t₂ = 25 s
as in this range it has a constant speed
v = x₂ / t₂
x₂ = v t₂
x₂ = 20 25
x₂ = 500 m
the total distance traveled is
x_total = x₁ + x₂
x_total = 100 + 500
x_total = 600 m
The coefficient of kinetic friction<span> is the force between two objects when one object is moving, or if two objects are moving against each other</span>