Answer:
The equation which describes conservation of charge is 
Explanation:
The law of conservation charge states that for an isolated system that sum of initial charges is equal to sum of final charges, that is the total charge is conserved.
let the sum of initial charges = 
let the sum of the final charges = 

Therefore, the equation which describes conservation of charge is 
Answer:
Neptune is approximately 41 times as far from the sun as Venus
Explanation:
Estimate = distance of Neptune from the sun ÷ distance of Venus from the sun = 4.5×10^9 ÷ 1.18×10^8 = 40.9 (approximately 41)
A. Impulse is simply the product of Force and time.
Therefore,
I = F * t --->
1
where I is impulse, F is force, t is time
However another formula for solving impulse is:
I = m vf – m vi --->
2
where m is mass, vf is final velocity and vi is initial
velocity
Therefore using equation 2 to solve for impulse I:
I = 2000kg (0) – 2000kg (77 m/s)
I = -154,000 kg m/s
B. By conservation of momentum, we also know that Impulse
is conserved. That means that increasing the time by a factor of 3 would still
result in an impuse of -154,000 kg m/s. So,
I = F’ * (3 t) = -154,000 kg m/s
Since t is multiplied by 3, therefore this only means
that Force is decreased by a factor of 3 to keep the impulse constant,
therefore:
(F/3) (3t) = -154,000 kg m/s
Summary of Answers:
A. I = -154,000 kg m/s
B. Force is decreased by factor of 3
Answer:
True
Explanation:
-NIST 800-14's are generally accepted principles for securing information technology systems.
- The defined principles, if adhered to and continously improved, will will ensure sytem security over it's lifetime as desired.