Answer:
The greatest speed of the car is 19.36m/s
Explanation:
The maximum speed the car will attain without skidding is given by:
F= uN = umg ...eq1
But F = mv^2/r
mv^2/r = umg
Dividing both sides by m, leaves you with:
V= Sqrt(ugr)
Where u = coefficient of static friction
g = acceleration due to gravity
r = raduis
Given:
U = 0.82
r=0.82
g= 9.8m/s
V = Sqrt(0.82 × 9.8 × 45)
V = Sqrt(374.85)
V = 19.36m/s
I assume you meant to say

Given that <em>x</em> = √3 and <em>x</em> = -√3 are roots of <em>f(x)</em>, this means that both <em>x</em> - √3 and <em>x</em> + √3, and hence their product <em>x</em> ² - 3, divides <em>f(x)</em> exactly and leaves no remainder.
Carry out the division:

To compute the quotient:
* 2<em>x</em> ⁴ = 2<em>x</em> ² • <em>x</em> ², and 2<em>x</em> ² (<em>x</em> ² - 3) = 2<em>x</em> ⁴ - 6<em>x</em> ²
Subtract this from the numerator to get a first remainder of
(2<em>x</em> ⁴ + 3<em>x</em> ³ - 5<em>x</em> ² - 9<em>x</em> - 3) - (2<em>x</em> ⁴ - 6<em>x</em> ²) = 3<em>x</em> ³ + <em>x</em> ² - 9<em>x</em> - 3
* 3<em>x</em> ³ = 3<em>x</em> • <em>x</em> ², and 3<em>x</em> (<em>x</em> ² - 3) = 3<em>x</em> ³ - 9<em>x</em>
Subtract this from the remainder to get a new remainder of
(3<em>x</em> ³ + <em>x</em> ² - 9<em>x</em> - 3) - (3<em>x</em> ³ - 9<em>x</em>) = <em>x</em> ² - 3
This last remainder is exactly divisible by <em>x</em> ² - 3, so we're left with 1. Putting everything together gives us the quotient,
2<em>x </em>² + 3<em>x</em> + 1
Factoring this result is easy:
2<em>x</em> ² + 3<em>x</em> + 1 = (2<em>x</em> + 1) (<em>x</em> + 1)
which has roots at <em>x</em> = -1/2 and <em>x</em> = -1, and these re the remaining zeroes of <em>f(x)</em>.
Risk of not being able to reduce their weight
Question is missing:
"What is the gravitational force between the Sun and Jupiter?"
Answer:

Explanation:
The gravitational force between two objects is given by

where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
In this problem, we have
is the mass of the sun
is the mass of Jupiter
is their separation
Solving the equation, we find

Answer:
I would probably say C to be completely honest
Explanation:
If you agree make sure to give me a like