Use the law of conservation of momentum. Since the momentum is a linear measure, we can treat each of the dimension separately:
i-direction:

j-direction:

Answer: Final velocity is: (10i + 15j) m/s
Change in the kinetic energy:

Answer: The system lost 500J worth of kinetic energy in the collision
Answer: C
X = Displacement of the spring
Hooke's law: It states that the applied force F is proportional to the displacement of spring .
F ∝ x
Where, x = displacement of spring in meters
F = force, measured in Newtons
In another words The force F is equal to the constant K times the disparagement.
F = k.x
Where k is constant and it depends on elastic material.
Spring has restorative force.
If the spring moves in opposite direction then,
F = - k.x
A negative sign indicates that the spring resists and force is to the left. The compression of the spring is greater than the restoring force.
Example: A mass 'm' stretches a spring at a displacement x.
Explanation:
Unclear question. The clear rendering reads;
"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?
Answer:
2. A 1 litre mug of hot chocolate at 75 degrees.
Explanation:
Thermal energy is directly proportional to mass, so as the mass increases, the thermal energy of the substance increases as well.