Answer:
4.02 km/hr
Explanation:
5 km/hr = 1.39 m/s
The swimmer's speed relative to the ground must have the same direction as line AC.
The vertical component of the velocity is:
uᵧ = us cos 45
uᵧ = √2/2 us
The horizontal component of the velocity is:
uₓ = 1.39 − us sin 45
uₓ = 1.39 − √2/2 us
Writing a proportion:
uₓ / uᵧ = 121 / 159
(1.39 − √2/2 us) / (√2/2 us) = 121 / 159
Cross multiply and solve:
159 (1.39 − √2/2 us) = 121 (√2/2 us)
220.8 − 79.5√2 us = 60.5√2 us
220.8 = 140√2 us
us = 1.115
The swimmer's speed is 1.115 m/s, or 4.02 km/hr.
Answer:it helps get everyone in the same page
Explanation:
This is important so everyone knows what they should be doing
A girl standing on a floor would have two opposite forces acting on it. These forces are the weight and the normal force. Since no other forces are acting and that the girl is at rest, then the weight must equate to the normal force. Therefore, the supporting force would be:
F = mg = 55kg (9.81 m/s^2) = 539.55 N
That's false. No medium = no sound.
Distance fallen = 1/2 ( V initial + V final ) *t
We know
a = -9.8 m/s2
t=120s
To find distance fallen, we need to find V final
Use the equation
V final = V initial + a*t
Substitute known values
V final = 0 + (-9.8)(120)
V final = -1176 m/s
Then plug known values to distance fallen equation
Distance fallen = 1/2 ( 0 + 1176 )(120)
= 1/2(1776)(120)
=106,560 m
This way plugging into distance equation is actually the long way. A faster way is to plug the values into
Distance fallen = V initial * t + 1/2(a*t)
We won't need to find V final using another equation.
But anyways, good luck!