Each elements emission spectrum is distinct because each element has a different set of electron energy levels. The emission lines correspond to the differences between various pairs of the many energy levels. The lines (photons) are emitted as electrons fall from higher energy orbitals to lower energies.
For this conversion you should know that 1 meter has 1000 millimeters and that 1s equals 1000000 micro seconds, then:
7mm/us * 1m/1000mm * 1000000us/1s = 7000 m/s
The mm are canceled just like the micro seconds and the result remains in m / s .
Therefore option A is correct
A) 7000m / s
Answer:
(D) 0.99 cm
Explanation:
Given that the radius of curvature of the mirror is 25 cm.
And another car is following which is behind the mirror of 20 m.

Focal length is half of the radius of curvature and it is negative for convex lens.
Now the mirror formula.

So,

Now
Magnification is,

So,

So, Height of the image

Therefore, the image height is 0.99 cm.
You already told us that its speed is constant. That's one part of acceleration.
The other part of acceleration is the direction it's moving.
If it's rolling in a straight line, then there's no acceleration.
If it's curving left or right, then that's acceleration.
Answer:
Four charges of equal magnitude sitting at the vertices of a square
Explanation:
We can arrive at such a situation by thinking of a simple example first, a configuration of two charges. The force acting on the middle point of a straight line joining the two points(charges) will be zero. That is, the net Electric field will be zero as they cancel out being equal in magnitude and opposite in direction.
Now, we can extend this idea to a square having charge q at each vertex. If we put 'p' at the geometric center, we can see that the Electric fields along the diagonals cancel out due to the charges at the diagonally opposite vertices(refer to the figure attached). Actually, the only requirement is that the diagonally opposite charges are equal.
We can further take this to 3 dimensions. Consider a cube having charges of equal magnitude at each vertex. In this case, the point 'p' will yet again be the geometric center as the Electric field due to the diagonally opposite charges will cancel out.