Answer:
The speed of the car at the end of the 2nd second = 8.0 m/s
Explanation:
The equations of motion will be used to solve this problem.
A car starts from rest,
u = initial velocity of the car = 0 m/s
Accelerates at a constant rate in a straight line,
a = constant acceleration of the car = ?
In the first second the car moves a distance of 2.0 meters,
t = 1.0 s
x = distance covered = 2.0 m
x = ut + (1/2)at²
2 = 0 + (1/2)(a)(1²)
a = 4.0 m/s²
How fast will the car be moving at the end of the second second
Now,
a = 4.0 m/s²
u = initial velocity of the car at 0 seconds = 0 m/s
v = final velocity of the car at the end of the 2nd second = ?
t = 2.0 s
v = u + at
v = 0 + (4×2)
v = 8.0 m/s
<u>Answer:</u> The Fermi velocity of lead is 64.4 km/s.
<u>Explanation:</u>
To calculate the Fermi velocity, we use the equation:

where,
h = Planck's constant = 
= mass of electron = 
N = Number of atoms present in per volume of atom multiplied by number of electrons present in given atom = 
= Avogadro's number =
(When the mass is in kilograms)
V = Volume = 
M = molecular weight of lead = 207.2 g/mol
Putting values in above equation, we get:

(Conversion factor: 1 km = 1000 m)
Hence, the Fermi velocity of lead is 64.4 km/s
Answer:
C. a dense region of positive charge existed somewhere in the atom.
Explanation:
Physicist Ernest Rutherford created the gold foil experiment in which he shot a beam of alpha particles at a sheet of gold foil, which then sent a few of the particles flying after they were deflected. Based on the information gathered after completing this experiment, Rutherford concluded that a dense region of positive charge existed somewhere in the atom.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.
Mirror: Reflects off of
Glass of water: Goes through
Dark Fabric: Absorbs into
Convex.
Concave curved inward (like how a cave foes in) and convex curves outward. Reflected and refracted do not apply to a lens.