Answer:
a) F = 3.2 10⁻¹⁰ N
, b) v = 9.9 10⁷ m / s
Explanation:
a) The electric force is
F = q E
The electric field is related to the potential reference
V = E d
E = V / d
Let's replace
F = e V / d
Let's calculate
F = 1.6 10⁻¹⁹ 28 10³ / 1.4 10⁻²
F = 3.2 10⁻¹⁰ N
b) For this part we can use kinematics
v² = v₀ + 2 a d
v = √ 2 ad
Acceleration can be found with Newton's second law
e V / d = m a
a = e / m V / d
a = 1.6 10⁻¹⁹ / 9.1 10⁻³¹ 28 10³ / 1.4 10⁻²
a = 3,516 10⁻¹⁷ m / s²
Let's calculate the speed
v = √ (2 3,516 10¹⁷ 1.4 10⁻²)
v = √ (98,448 10¹⁴)
v = 9.9 10⁷ m / s
Answer:
He will complete the race in total time of T = 10 s
Explanation:
Total distance moved by the sprinter in 2.14 s is given as



now the distance remaining to move

now he will move with uniform maximum speed for the remaining distance
so we will have


so the total time to complete the race is given as

Answer:
The work done on the athlete is approximately 2.09 J
Explanation:
From the definition of the work done by a variable force:

and substituting with the function of our problem:

Answer:
37.34372 kg
Explanation:
m = Mass
= Change in temperature
1 denotes water
2 denotes copper
c = Heat capacity
Heat is given by

In this case the heat transfer will be equal

Mass of copper block is 37.34372 kg
While the answer is that it does, it transmits light VERY poorly. Most of the light bounces off it and the rest is refracted into the ocean. This is why you can't see much that is far away from you in the ocean unlike if you're just on land.