Answer:
speed maximum
restoring force minimum
Explanation:
When the particle executing SHM is at its mean position or equilibrium position, then its velocity is maximum and the kinetic energy is also maximum. It is because the kinetic energy is proportional to the square of the velocity as velocity maximum then kinetic energy is also maximum.
The acceleration is minimum at the equilibrium position so the restoring force is also minimum t its equilibrium position.
Answer:
Acceleration = 4 m/s²
Explanation:
Given the following data;
Force = 8 N
Mass = 2 kg
To find the acceleration of the block;
Newton's Second Law of Motion states that the acceleration of a physical object is directly proportional to the net force acting on the physical object and inversely proportional to its mass.
Mathematically, it is given by the formula;
Substituting into the formula, we have;
Acceleration = 4 m/s²
I think D x=vxt because it's equation finding change of x (displacement) and using time
The horizontal velocity was constant, so:
it traveled 90meters
Answer:
A) 21.2 kg.m/s at 39.5 degrees from the x-axis
Explanation:
Mass of the smaller piece = 200g = 200/1000 = 0.2 kg
Mass of the bigger piece = 300g = 300/1000 = 0.3 kg
Velocity of the small piece = 82 m/s
Velocity of the bigger piece = 45 m/s
Final momentum of smaller piece = 0.2 × 82 = 16.4 kg.m/s
Final momentum of bigger piece = 0.3 × 45 = 13.5 kg.m/s
since they acted at 90oc to each other (x and y axis) and also momentum is vector quantity; then we can use Pythagoras theorems
Resultant momentum² = 16.4² + 13.5² = 451.21
Resultant momentum = √451.21 = 21.2 kg.m/s at angle 39.5 degrees to the x-axis ( tan^-1 (13.5 / 16.4)