Answer:
option (a) 0.61 s
Explanation:
Given;
Time taken by the ball to reach the ground = 0.50 s
Let us first calculate the distance through which the ball falls on the ground
from the Newton's equation of motion, we have

where,
s is the distance
a is the acceleration
t is the time
here it is the case of free fall
thus, a = g = acceleration due to gravity
u = initial speed of the ball = 0
on substituting the values, we get

or
s = 1.225 m
Now,
when the elevator is moving up with speed of 1.0 m/s
the initial speed of the ball = -1.0 m/s (as the elevator is moving in upward direction)
thus , we have

or

or
4.9t^2 - t - 1.225 = 0
or
t = 0.612 s
hence, the correct answer is option (a) 0.61 s
You pick up the hula hoop and stand inside of it then pick it up will you’re inside it and hold to your waist and spin it then turn your hips
A) The power delivered to the lines is

And the voltage at which the lines work is

Since the power delivered is the product between the voltage and the current:

We can find the current flowing in the lines:

b) The voltage change along each line can be found by using Ohm's law:

c) The power wasted as heat along each line is given by:

And since we have 2 lines, the total power wasted as heat in both lines is
I believe the answer is <span>c. Factor 1 is a natural factor and Factor 2 is a human induced factor.
The amount of heat received by the sun has increased because of the amount of CO2 which human expelled to the atmosphere.
Because of this CO2, the heat from the sun couldn't be reflected outside the atmosphere and trapped within the earth.</span>
T2=r In the form of Kepler's law that can use to relate the period T and radius of the planet in our solar systems
<u>Explanation:</u>
<u>Kepler's third law:</u>
- Kepler's third law states that For all planets, the square of the orbital
period (T) of a planet is proportional to the cube of the average orbital radius (R).
- In simple words T (square) is proportional to the R(cube) T²2 ∝1 R³3
- T2 / R3 = constant = 4π ² /GM
where G = 6.67 x 10-11 N-m2 /kg2
M = mass of the foci body