Answer:50ms-1
Explanation:use the formula v=d/t
in order to find the velocity,devide the distance with time taken.
since distance is 400 meters devide it with seconds whiuch gives us 50.
<span>To find the wavelength of a neutron can be calculated by using the formula
Wavelength=h/m x v
Where h is planck's constant
m=mass of neutron
v= velocity of the particle
By substituting the given values
Wavelength= 6.63 × 10–34 j s / 1.675 × 10–27 kg x 2 m/s^-1
Wavelength of a neutron=1.979 x 10^-7 m</span>
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
Answer:
Speed is a "scalar" quantity
(C) is the correct answer
An object could travel at 10 m/s to some point and then return to the origin at 10 m/s for an average speed of 10 m/s, however it's displacement over that time would be zero for a net velocity of zero.
When the temperature of an object that is giving off light is increased, the particles in the object will move at a faster rate and there will be increased vibration of these molecules. This will makes the object to emit more light and to shine more brightly.